Tribhuvan University
Institute of Engineering
Pulchowk Campus
Department of Electronics and Computer Engineering

Software Engineering
[Subject Code: CT 601]

by
Santosh Girli
Lecturer, IOE, Pulchowk Campus.

Overall Course Outline:
SOFTWARE ENGINEERING

CT 601

Lecture : 3 Year : |1
Tutorial : 1 Part : |
Practical : 1.5

Course Objectives:

This course provides a systematic approach towards
planning, development, implementation and maintenance
of system, also help developing software projects.

1. Software Process and requirements (12 hours)
1.1. Software crisis

1.2. Software characteristics

1.3. Software quality attributes

1.4. Software process model

1.5. Process iteration

1.6. process activities

1.7. Computer-aided software engineering

1.8. Functional and non —functional requirements
1.9. User requirements

1.10. System requirement

1.11. Interface specification

1.12. The software requirements documents
1.13. Feasibility study

1.14. Requirements elicitation and analysis
1.15. Requirements validation and management
2. System models (3 hours)

2.1. Context models

2.2. Behavioural models

2.3. Data and object models

3. Architectural design (6 hours)

3.1. Architectural design decisions

3.2. System organization

3.3. Modular decomposition styles

3.4. Control styles

3.5. Reference architectures

3.6. Multiprocessor architecture

3.7. Client —server architectures

3.8. Distributed object architectures

3.9. Inter-organizational distributed computing
4. Real —time software design (3 hours)
4.1. System design

4.2. Real-time operating systems

4.3. Monitoring and control systems

4.4. Data acquisition systems

5. Software Reuse (3 hours)
5.1. The reuse landscape

5.2. Design patterns

5.3. Generator —based reuse
5.4. Application frameworks
5.5. Application system reuse

6. Component-based software engineering (2 hours)
6.1. Components and components models

6.2. The CBSE process

6.3. Component composition

7. Verification and validation (3 hours)

7.1. Planning verification and validation

7.2. Software inspections

7.3. Verification and formal methods

7.4. Critical System verification and validation
8. Software Testing and cost Estimation (4 hours)
8.1. System testing

8.2. Component testing

8.3. Test case design

8.4. Test automation

8.5. Metrics for testing

8.6. Software productivity

8.7. Estimation techniques

8.8. Algorithmic cost modeling

8.9. Project duration and staffingf

9. Quality management (5 hours)
9.1. Quality concepts

9.2. Software quality assurance

9.3. Software reviews

9.4. Formal technical reviews

9.5. Formal approaches to SQA

9.6. Statistical software quality assurance
9.7. Software reliability

9.8. A framework for software metrics

9.9. Matrices for analysis and design model
9.10. ISO standards

9.11. CMMI

9.12. SQA plan

9.13. Software certification

10. Configuration Management (2 hours)
10.1. Configuration management planning
10.2. Change management

10.3. Version and release management
10.4. System building

10.5. CASE tools for configuration management

Practical

The laboratory exercises shall include projects on requirements,
analysis and designing of software system. Choice of project
depend upon teacher and student, case studies shall be included
too. Guest lecture from software industry in the practical session.

References:
1. lan Sommerville, Software Engineering , Latest edition

2. Roger S. Pressman, Software Engineering —A Practitioner’s
Approach, Latest edition

3. Pankaj Jalote, Software Engineering-A precise approach, Latest
edition

4. Rajib Mall, Fundamental of Software Engineering, Latest
edition

Evaluation Scheme:

The questions will cover all the chapters in syllabus. The
evaluation scheme will be as indicated in the table below:

Chapters Hours Marks distribution™®
1 12 20
2 3 5
3 6 10
4 3 5
5 3 5
6 2 3
7 5 10
8 4 8
9 5 10
10 2 4
Total 45 80

*There may be minor deviation in marks distribution

Software Engineering
Chapter One

Software Process and requirements

Chapter One: Software Process and requirements

Course Outline:

1.1. Software crisis

1.2. Software characteristics

1.3. Software quality attributes

1.4. Software process model

1.5. Process iteration

1.6. process activities

1.7. Computer-aided software engineering

1.8. Functional and non —functional requirements
1.9. User requirements

1.10. System requirement

1.11. Interface specification

1.12. The software requirements documents
1.13. Feasibility study

1.14. Requirements elicitation and analysis
1.15. Requirements validation and management

12 hours, 20 Marks

What 1s Software? Computer software Is the
product that software professionals build and
then support over the long term.

Software
Application System Utility
Software Software Software

| JIGeneric (or Packaged) Software

|__y{Tailored (or Specific) Software

\ 4

1. Application Software:-

= Application software Is that software which Is
designed and developed to perform some
particular application.

= |t can be divided into following two types:-
a. Generic (or Packaged) Software:-

= The application software which is designed to
fulfill the needs of large group of users Is
known as generic or packaged software.

= Example: MS-Word, Adobe Reader, MS-
Excel.

\ 4

b. Tailored (or Specific) Software:-

= The application software which Is designed to
fulfill the needs of a particular
user/company/organization Is known as
tailored or specific software.

Ex: Software wused In department stores,
hospitals, schools etc.

2. System Software:-

= The software which can directly control the
hardware of the computer are known as system
software.Ex: Video driver, audio driver.

\ 4

3. Utility Software:-

Small software that usually performs some
useful tasks is known as utility software.

Ex: Win Zip, JPEG Compressor, PDF Merger,
PDF to Word Converter etc.

\ 4

1.2.Software Characteristics

Software 1s developed or engineered, not
manufactured In the classical sense

Software doesn’t “wear out”

Software Is custom-built, rather than being
assembled from existing components

\ 4

Continued...

1. Software Is developed or engineered, not
manufactured in the classical sense

= Although some similarities exists between software
development and hardware manufacturing, the two
activities are fundamentally different.

= Similarities

v Hig
v Bot

n quality needs to be achieved
n depend on people &

v Reo

uires construction of product

\ 4

Continued...

= Software Is a design of strategies, Instruction
which finally perform the designed, instructed
tasks. And a design can only be developed, not
manufactured.

= Software Is virtual. That Is, software can be
used using proper hardware. we can only use
It, but we cannot touch and see hardware. Thus
software never gets manufactured, they are
developed.

2. Software doesn’t “wear out”

(H/W failure)

Increased Failure Eate

The Bathtub Curve

Fallure Hate wversus Time

failures due to design
/manufacturing defects

End of Life "Wear-Out

. Ihcreasing Fallure Rate
Infant hoaortality 4

Decreasing Failure Rate cumulatiye affect$

Marmal Life (Useful Life)

Lowe "Constant” Faillure Hate exgremes etc.

Time Sy

g

Figure 1 : Bathtub Curve

\ 4

Figure 1 depicts failure rate vs time for hardware
called bath tub curve

= The relationship, often called the “bathtub
curve”

= |t indicates that hardware exhibits relatively
high failure rates early In its life (failures
due to design /manufacturing defects);

= defects are corrected and the failure rate
drops to a steady-state level (ideally, quite
low) for some period of time.

\ 4

Continued...

= As time passes, the failure rate rises again as
hardware components suffer from the
cumulative affects of dust, vibration, abuse,
temperature extremes, and many other
environmental maladies.

= Stated simply, the hardware begins to wear
Out.

high failure rates in the
beginning due to -
Undiscovered defects. S/W Fa”ure
Test{Debudg Useful Life Obsclescence

outdated and
no longer

used.

Uparade
porade

L
Upgorade

Failure Rate

=

Undergo changes

Time

\ 4

Continued...
Software Is not susceptible to environmental maladies

In theory, s/w should take the form of “idealized
curve”

However, Undiscovered defects in the beginning will
cause high failure rates

These are corrected (ideally, without Introducing
other errors) and the curve flattens as shown

During the life time it undergo changes

\ 4

Continued...

= it 1s likely that some new defects will be
Introduced, causing the failure rate curve to
spike as shown

= Before the curve can return to the original
steady-state failure rate, another change Is
requested, causing the curve to spike again

= Slowly, the minimum failure rate level begins
to rise- due to change.

\ 4

Continued...

Another aspect of wear illustrates the difference
between hardware and software.

When a hardware component wears out, it Is replaced
by a spare part.

There are no software spare parts.

Every software failure indicates an error in design or

In the process through which design was translated
Into machine executable code.

Therefore, software maintenance Involves
considerably more complexity than hardware
maintenance.

\ 4

3. Software Is custom-built, rather than being
assembled from existing components

= Consider the manner in which the control

hardware for a computer-based product Is
designed and built.

= The design engineer draws a simple schematic
of the digital circuitry, does some fundamental

analysis to assure that proper function will be
achieved, and

\ 4

Continued...

* then goes to the shelf where catalogs of digital
components exist.

= Each integrated circuit (called an IC or a chip)
has a part number, a defined and validated
function, a well-defined iInterface, and a
standard set of integration guidelines.

= After each component Is selected, 1t can be
ordered off the shelf.

\ 4

Continued...

= Standard screws and off-the-shelf integratec
circuits are only two of thousands of standaroc
components that are used by mechanical anc
electrical engineers as they design new
systems.

= In the hardware world, component assemble
and reuse Is a natural part of the engineering
process.

= |n the software world, it is something that has
only begun to be achieved on a broad scale.

\ 4

1.3. Software quality attributes
= Functionality

v All the features & their functionality should
works as expected.

v' There should not be any deviation in the actual
result and expected result.

= Reliability

v An s/w is said to be reliable if it delivers all
features without any failure & that it Is error
free.

\ 4

e.g.: an application of saving student records
without any error and should not fail after
entering 100 records.

e Correctness: A software product Is correct, If
different requirements as specified in the
software requirements specification(SRS)
document have been correctly implemented.

o Usability

v An s/w product is said to be usable of it is easy
to use without any specific training.

v An s/w must be user friendly (i.e. easy to use).

\ 4

= Reusability

v An s/w product has good reusability if
different modules of the product can be reused
to develop new product.

= Efficiency
v" A product should not waste resource.
= Portability

v An s/w product is said to be portable if it can
be easily made to work In different operating
system.

\ 4

= Maintainability

An s/w product is said to be maintainable if
v Errors can be corrected easily.

v"New functions can be added easily.
v'Functionality can be modified easily

= Durable

v An s/w product is said to be durable if it can be
In use for long period of time.

\ 4

Software Crisis (assignment 1)

The difficulty of writing the code for a computer
program which is correct and understandable is
referred to as software crisis.

or

Software crisis 1s also referred to as inability to
hire enough qualified programmers.

Tnt:t-na'l.lu n - ‘a
Demand - hﬂﬂ

Tr'!.r lm.:h,?
C hﬂ""l’?j

Software Crisis
&m Sﬂm
Methods Tools

36

\ 4

= Software market today has a turnover of more than
millions of rupees.

= Qut of this, approximately 30% of software Is used
for personal computers and the remaining software Is
developed for specific users or organizations.

= Application areas, such as the banking sector are
completely dependent on software application for
their working. Software failures in these technology-
oriented areas have led to considerable loss in terms
of time, money, and even human lives.

\ 4

History has seen many such failures. Some of
these are listed below:

1)1991 during Gulf War: The USA use patriot
missiles as a defense against lragi scud
missile. However, patriot failed to hit the scud
many times which cost life of 28 USA soldiers.
In an inquiry it is found that a small bug
had resulted In miscalculation of missile
path.

\ 4

2) Arian- 5 Space Rocket: In 1996, developed
at cost of $7000 Million Dollars over a period
of 10 years was destroyed within less than 1
minutes after its launch. As there was software
bugs in rocket guidance system.

3) ""Dollar 924 lakhs': In 1996, US bank credit
accounts of nearly 800 customer with dollar
924 lakhs. This problem was due to main
programming bug in the banking system.

\ 4

4) The North East blackout in 2003- has been
major power system failures in the history of
north which involves 100 power plants, 50
million customer faced problem, $ 6 million
dollar financial loss.

5) In June 1980, the North American Aerospace
Defense Command (NORAD) reported that
the US was under missile attack. The report
was traced to a faulty computer circuit that
generated incorrect signals.

\ 4

Continue...

If the developers of the software responsible for
processing these signals had taken into account
the possibility that the circuit could fail, the
false alert might not have occurred

\ 4

1.3. Software Process Model

= Since the prime objective of software engineering is to
develop methods for large systems, which produce
high quality software at low cost and In reasonable
time.

= So It Is essential to perform software development in
phases. This phased development of software is often
referred to as software development life cycle (SDLC)
or software life cycle.

= And the models used to achieve these goals are termed
as Software Process Models.

Preliminary
| nvestigato

Software
Analysis
Systematic
Development
of Software

Fig 1 software development process

43

\ 4

In fig 1,
* These phases work In top to bottom approach

» The phases take Inputs from the previous
phases, add features, and then produce outputs

\ 4

1. Preliminary investigation/ feasibility study:

= Feasibility study decides whether the new
system should be developed or not.

= There are three constraints, which decides the
go or no-go decision.

a. Technical:

determines whether technology needed for proposed
system is available or not.

determines whether the existing system can be
upgraded to use new technology

whether the organization has the expertise to use It or
not.

\ 4

b. Time:

determines the time needed to complete a project.

Time IS an Important issue as cost increases with an
Increase In the time period of a project.

c. Budget:

This evaluation looks at the financial aspect of the
project.

determines whether the Investment needed to

Implement the system will be recovered at later
stages or not.

\ 4

2. Software Analysis/Requirement Analysis:

= studies the problem or requirements of software In
detail.

= After analyzing and elicitations of the requirements
of the user, a requirement statement known as
software requirement specification (SRS) s
developed.

\ 4

3. Software Design:

= most crucial phase in the development of a system.
The SDLC process continues to move from
the what questions of the analysis phase to the how.

= |ogical design is turned into a physical design.

= Based on the user requirements and the detailed
analysis the system must be designed.

\ 4

= |nput, output, databases, forms, processing
specifications etc. are drawn up In detail.

» Tools and techniques used for describing the system
design are: Flowchart, ERD, Data flow diagram
(DFD), UML diagrams like Use case, Activity,
Sequence etc.

\ 4

4. Software Coding:
= Physical design into software code.

= Writing a software code requires a prior knowledge
of programming language and its tools. Therefore, it
IS Important to choose the appropriate programming
language according to the user requirements.

= A program code is efficient if it makes optimal use of
resources and contains minimum errors.

\ 4

5. Software Testing:

Software testing iIs performed to ensure that
software produces the correct outputs I.e. free
from errors. This implies that outputs produced
should be according to user requirements.

Efficient testing improves the quality of software.

Test plan Is created to test software in a planned and
systematic manner.

\ 4

6. Software Maintenance:

This phase comprises of a set of software
engineering activities that occur after software is
delivered to the user.

After the software Is developed and delivered, it may
require changes. Sometimes, changes are made In
software system when user requirements are not
completely met.

To make changes In software system, software
maintenance process evaluates, controls, and
Implements changes.

52

\ 4

Class Work

Q2.

Mention different phases of Software
Development life cycle(SDLC), If you are
under the project of Library Management

system.

53

Thank Youl!!!

Software Engineering
Chapter One

Software Process and requirements

\ 4

Software
Process Model
(Continue...)

\ 4

What 1s Software process?

= When you work to build a product or system, it’s
Important to go through a series of predictable steps—a
road map that helps you
create a timely, high-quality result. The road map that
you follow is called a “software process.”

= Who does Iit? Software engineers and their
managers adapt the process to their needs and then
follow It. In addition, the people who have requested
the software have in the process of defining, building,
and testing It.

\ 4

Why is it important?

Because It provides path, stability, control over your
project.

What are the steps?

At a detailed level, the process that you adopt
depends on the software that you’re building. One
process might be appropriate for creating software for
an aircraft avionics system, while an entirely different
process would be iIndicated for the creation of a
website.

\ 4

from a technical point of view:

A software process Is a framework for the
activities, actions, and tasks that are required to
build high-quality software- Roger S. Pressman

https://en.wikipedia.org/wiki/Roger_S._Pressman

1.3.1 Waterfall Model

\ 4

a. Waterfall model
I. Feasibility study
—Financial
—Technical
—Time etc.

Il. Requirement specification: To specify the requirements’
users specification should be clearly understood and the
requirements should be analyzed. This phase involves
Interaction between user and software engineer, and
produces a document known as software requirement
specification (SRS).

\ 4

a. Waterfall model

111. Design: Determines the detailed process of developing
software after the requirements are analyzed. It utilizes
software requirements defined by the user and translates
them into a software representation. In this phase,

phase. The software engineer, In
this phase iIs mainly concerned with the data structure,
algorithmic detail, and interface representations.

\ 4

a. Waterfall model

IV. Coding: Emphasizes on translation of design into a
programming language using the coding style anc
guidelines. The programs created should be easy to read anc
understand. All the programs written are documentec
according to the specification.

v. Testing: Ensures that the product Is developed according to
the requirements of the user. Testing Is performed to verify
that the product is functioning efficiently with minimum
errors. It focuses on the internal logics and external
functions of the software

¥

a. Waterfall model

vi. Implementation and maintenance: Delivers fully
functioning operational software to the user. Once
the software Is accepted and deployed at the user’s
end, various changes occur due to changes In
external environment (these include upgrading new
operating system or addition of a new peripheral
device). The changes also occur due to changing
requirements of the user and the changes occurring
In the field of technology. This phase focuses on
modifying software, correcting errors, and
Improving the performance of the software.

10

\ 4

a. Waterfall model

Input to the Phase Process/Phase QOutput of the Phase
Requirements defined through Requirements analysis ~ Software requirements specification
communication document

Software requirements specification Design Design specification document
document

Design specification document Coding Executable software modules
Executable software modules Testing Integrated product

Integrated product Implementation Delivered software

Delivered software Maintenance Changed requirements

11

v

a. Waterfall model

Advantages

Disadvantages

* Relatively simple to understand.
* Each phase of development proceeds sequentially.

* Allows managerial control where a schedule with
deadlines is set for each stage of development.

* Helps in controlling schedules, budgets, and
documentation.

* Requirements need to be specified before the
development proceeds.

* The changes of requirements in later phases of
the waterfall model cannot be done. This
implies that once an application s in the testing
phase, it is difficult to incorporate changes at
such a late phase.

* No user involvement and working version of
the software is available when the software is
developed.

* Does not involve risk management.

* Assumes that requirements are stable and are
frozen across the project span.

12

\ 4

b. prototype model

he prototyping model is applied when there Is an
absence of detailed information regarding Input
and output requirements In the software.

Used If the requirements are not preciously
specified.

Prototyping model increases flexibility of the
development process by allowing the user to
Interact and experiment with a working
representation of the product known as

A prototype gives the user an actual feel of the
system. ’

A1y

Initial Design Customer Customer
Requirements [| Evaluation Satisfied
\ Review &
Updation
h
- . D
Maintain : Test evelopment

Proto Type Model

14

\ 4

I.Requirements gathering and analysis: Prototyping
model begins with requirements analysis, and the
requirements of the system are defined In detalil.
The user Is Interviewed to know the requirements
of the system.

11.Quick design: When requirements are known, a
preliminary design or a quick design for the
system 1Is created. It Is not a detailed design,
however, It includes the important aspects of the
system, which gives an idea of the system to the
user. Quick design helps In developing the
prototype.

\ 4

111.Build prototype: Information gathered from quick
design Is modified to form a prototype. The first
prototype of the required system Is developed
from quick design. It represents a ‘rough’ design
of the required system.

Iv.User evaluation: Next, the proposed system Is
presented to the user for consideration as a part of
development process. The users thoroughly
evaluate the prototype and recognize its strengths
and weaknesses, such as what Is to be added or
removed.Comments and suggestions are collected
from the users and are provided to the developer.

\ 4

V. Prototype refinement: Once the user evaluates the
prototype, 1t Is refined according to the
requirements. The developer revises the prototype
to make it more effective and efficient according
to the user requirement. If the user Is not satisfied
with the developed prototype, a new prototype Is
developed with the additional information
provided by the user. The new prototype Is
evaluated In the same manner, as the previous
prototype,process continues until all the
requirements specified by the user are met. Once
the user Is satisfied a final system Is developed.

VI.

\ 4

Engineer product: Once the requirements are
completely known, user accepts the final
prototype. The final system is thoroughly
evaluated and tested followed by routine
maintenance on continuing basis to prevent large-
scale fallures and to minimize downtime.

18

v

Advantages

Disadvantages

Provides a working model to the user early in the
process, enabling early assessment and increasing
user confidence.

Developer gains experience and insight by
developing a prototype, thereby resulting in better
implementation of requirements.

Prototyping model serves to clarify requirements,
which are not clear, hence reducing ambiguity and

improving communication between developer and
user.

There is a great involvement of users in software
development. Hence, the requirements of the
users are met to the greatest extent.

Helps in reducing risks associated with the project.

If the user is not satisfied by the developed
prototype, then a new prototype is developed.
This process goes on until a perfect prototype
is developed. Thus, this model is time
consuming and expensive.

Developer looses focus of the real purpose of
prototype and compromise with the quality
of the product. For example, they apply some
of the inefficient algorithms or inappropriate
programming languages used in developing the
prototype.

Prototyping can lead to false expectations. It
often creates a situation where user believes
that the development of the system is finished
when it 1s not.

The primary goal of prototyping is rapid
development, thus, the design of system can
suffer as it is built in a series of layers without
considering integration of all the other
components.

19

\ 4

c. Spiral Model

In 1980°s Boehm introduced a process model
known as spiral model. The spiral model
comprises of activities organized In a spiral,
which has many cycles. This model combines
the features of prototyping model and waterfall
model and iIs advantageous for large, complex
and expensive projects which involves high risk.

20

Curmulative Cost

r
Progress
— | A through
steps

Evaluate alternatives,
identify, resolve risks

Determine
objectives,
alternatives,
constraints

Risk
analysis

Commitment

Review partition

Requirements plan
Life-cycle plan

Requirements
validation

Development

1 Integration |
and test 1

Plan next phases
Implemean-

tation

Develop, verify
next-level product

\ 4

1. Each cycle of the first quadrant commences with
Identifying the goals for that cycle. In addition, it
determines other alternatives, which are possible
In accomplishing those goals.

2. Next step in the cycle evaluates alternatives based
on objectives and constraints. This process
Identifies the project risks. Risk signifies that
there I1s a possibility that the objectives of the
project cannot be accomplished. If so the
formulation of a cost effective strategy for
resolving risks Is followed. the strategy, which
Includes prototyping, simulation, benchmarking.,

\ 4

3. The development of the software depends on
remaining risks. The third quadrant develops the
final software while considering the risks that can
occur. Risk management considers the time and
effort to be devoted to each project activity, such
as planning, configuration management, quality
assurance, verification, and testing.

4. The last quadrant plans the next step, and includes
planning for the next prototype and thus,comprises
of requirements plan, development plan,
Integration plan, and test plan

\ 4

Advantages

Disadvantages

* Avoids the problems resulting in risk-driven
approach in the software.

* Specifies a mechanism for software quality
assurance activities.

* Spiral model is utilised by complex and dynamic
projects.

" Re-evaluation after each step allows changes in
user perspectives, technology advances or financial
perspectives.

» Estimation of budget and schedule gets realistic as
the work progresses.

» Assessment of project risks and its resolution
1s not an easy task.

» Difficult to estimate budget and schedule in
the beginning, as some of the analysis is not
done until the design of the software is
developed.

24

\ 4

d. Evolutionary model

= An Evolutionary model breaks up an overall solution
Into increments of functionality and develops each
Increment individually.

= The evolution model divides the development cycle
Into smaller, ""Incremental Waterfall Model' In

which users are able to get access to the product at the
end of each cycle.

» The users provide feedback on the product for
planning stage of the next cycle and the development
team responds, often by changing the product, plans
Or process.

 S—

| Communication

: Planning
g | Modeling (analysis, design)
5 — increment # n
b4 || Consfruction (code, tesf D‘
-E . Deployment (delivery, feedback) :H:\'D_-
F
= .. delivery of
g increment # 2 o] nth increment
-
c
2 delivery of

elivery o
E increment # 1 2nd increment
@ :I-D- delivery of
1st increment
Project Calendar Time

26

Evolutionary Model

* Advantages

— The user of an evolutionary model gets a chance to experiment
with a partially developed system much before the actual fully
developed version is released .

— Thus this model facilitates to elicit the exact requirements of the
user for incorporating into the fully developed system.

— Also the core modules get tested thoroughly ,thereby reducing
chances of errors in the final product

* Disadvantages

— In most practical problems .it is difficult to subdivide the problem into
several functional units that can be incrementally implemented and
delivered.

— Therefore ,this model 1s useful only for large problems, where it is
easler to identify modules for incremental implementation.

27

RAD model
—

T0 -2 days

Fig:- RAD (Rapid Application Development) Model

V model

Reqgquirement

\ 4

Acceptance

Design

System

Taest

System

Architecture

Modulel

coding

Test

Iintegration

@
I3
0
Test o~
S
ey
r
=
——
T

29

Thank Youl!!!

Software Engineering
Chapter One

Software Process and requirements

Chapter One: Software Process and requirements

Course Outline:

1.1. Software crisis

1.2. Software characteristics

1.3. Software quality attributes

1.4. Software process model

1.5. Process iteration

1.6. process activities

1.7. Computer-aided software engineering

1.8. Functional and non —functional requirements
1.9. User requirements

1.10. System requirement

1.11. Interface specification

1.12. The software requirements documents
1.13. Feasibility study

1.14. Requirements elicitation and analysis
1.15. Requirements validation and management

12 hours, 20 Marks

\ 4

What Is requirement?

= Requirements describe how a system should act,
appear, or perform.

= For this, when users request for software, they
possess an approximation of what the new system
should be capable of doing.

= Requirements differ from one user to another user
and from one business process to another business

Process.

\ 4

What Is software requirement?

|EEE defines requirement as

“(1) A condition or capability needed by a user to
solve a problem or achieve an objective. (2) A
condition or capability that must be met or
possessed by a system or system component to
satisfy a contract, standard, specification, or other
formally imposed documents. (3) A documented
representation of a condition or capability as in (1)or

(2)”

\ 4

Guidelines for Expressing Requirements

= Sentences and paragraphs should be short and
written In active voice. Also, proper grammar,
spelling, and punctuation should be used.

= Conjunctions, such as ‘and’ and ‘or’ should be
avolded as they indicate the combination of several
requirements in one requirement.

= Each requirement should be stated only once so that
It does not create redundancy In the requirements
specification document

Types of Requirements

Requirements

I

Functional Non-Functional

\ 4

= A functional requirement describes what a software
system should do, while non-functional
requirements place constraints on how the system
will do so.

= Functional requirements specifies a function that a
system or system component must be able to
perform. Whereas, non-functional requirements
(also known as quality requirements) relate to
system attributes, such as reliability, response time
etc.

\ 4

Functional requirement

= A banking system must send perform requested transaction,
whenever a certain condition Is met (i.e. account no,
password, etc).

Non-functional requirement

* Those transaction should be completed with a latency of no
greater than 6 hours from such an activity.

= Note: Example of functional and non-functional is on the
“Case study example”.

\ 4

Requirements Engineering Process

= The requirements engineering (RE) process is a series of
activities that are performed In requirements phase In
order to express requirements in software requirements
specification (SRS) document.

= These steps include feasibility study, requirements
elicitation, requirements analysis, requirements
specification, requirements validation, and requirement
management

Feasibility Report

¢

Requirements o
¢ Verification Feasibility Study

Requirements J \d

Management Requirements
Requirements Elicitation

‘ Specification
Requirements
SRS Analysis & Modelling

Fig: Requirement engineering process 0

\ 4

STEP 1: FEASIBILITY STUDY

Objectives of feasibility study:

* To determine whether the software can be
Implemented using current technology and
within the specified budget and schedule or not.

= To determine whether the software can be integrated
with other existing software or not.

= To minimizes project failure.

\ 4

Types of feasibility study:
Technical
v’ technical skills and capabilities of development team.

v Assure that the technology chosen, has large number

of users so that they can be consulted when problems
arise.

Operational

v' solution suggested by software development team is
acceptable or not.

v whether users will adapt to new software or not.

\ 4

Types of feasibility study:
Economic feasibility/ Budget

v whether the required software is capable of

generating financial gains for an organization or
not.

v"cost incurred on software development team
v'estimated cost of hardware and software.
v"cost of performing feasibility study.
Time
v'"Whether the project will be completed on pre-
specified time or not.

\ 4

Feasibility Study Process
1.Information assessment:

= verifies that the system can be Implemented using new
technology and within the budget.

2. Information collection:

= Specifies the sources from where information about software can
be obtained.

= Sources:
v users (who will operate the software)
v organization (where the software will be used).

v' software development team (who understands user requirements and
knows how to fulfill them in software).

3. Report writing:

= [nformation about changes in software scope, budget, schedule,
and suggestion of any requirements in the system.

\ 4

STEP2:REQUIREMENTS ELICITATION

Process of collecting information about software requirements
from different stakeholders (users, developer, project manager
etc.)

Various issues:
. Problems of understanding:

Users are not certain about their requirements and thus are unable
to express what they require in software and which requirements
are feasible.

This problem also arises when users have no or little knowledge
of the problem domain and are unable to understand the
limitations of computing environment of software.

\ 4

2. Problems of volatility:
= This problem arises when requirements change over time.
Elicitation Techniques

The commonly followed elicitation techniques are listed below:
1.Interviews:

= Ways for eliciting requirements, it helps software engineer,
users, & development team to understand the problem and
suggest solution for the problem.

= An effective interview should have characteristics listed
below:

v" Individuals involved in interviews should be able to accept new ideas,
focus on listening to the views of stakeholders & avoid biased views. []

v" Interviews should be conducted in defined context to requirements rather
than in general terms. E.g. a set of a questions or a requirements proposal.

16

\ 4

2.Scenarios:

= Helps to determine possible future outcome before
Implementation.

= |n Generally, a scenario comprises of:
v" Description of what users expect when scenario starts.

v' Description of how to handle the situation when software is
not operating correctly.

v Description of the state of software when scenario ends.
3.Prototypes:

= helps to clarify unclear requirements.

= helps users to understand the information they need to provide
to software development team.

4.Quality function deployment (QFD):
-Assignment 3

17

\ 4

STEP3: REQUIREMENT ANALYSIS
It is the process of studying and refining requirements

Tasks performed in requirements analysis are:

Understand the problem for which software is to be developed.

Develop analysis model to analyze the requirements in the
software.

Detect and resolve conflicts that arise due to unclear and unstated
requirements.

Determine operational characteristics of software and how it
Interacts with its environment.

18

\ 4

STEP4: REQUIREMENTS SPECIFICATION

= Development of SRS document (software requirement
specification document.

Characteristics of SRS
1. Correct:
SRS is correct when
= all user requirements are stated in the requirements document.

= The stated requirements should be according to the desired
system.

2. Unambiguous:

= SRS Is unambiguous when every stated requirement has only
one interpretation I.e. each requirement is uniguely interpreted.

19

\ 4

. Complete:

SRS Is complete when the requirements clearly define what the
software is required to do.

. Modifiable:

The requirements of the user can change, hence, requirements
document should be created in such a manner where those
changes can be modified easily.

. Ranked for importance and stability:
All requirements are not equally important.

20

\ 4

6. Verifiable:

= SRS is verifiable when the specified requirements can be verified
with a cost-effective process to check whether the final software
meets those requirements or not.

7. Consistent:

= SRS Is consistent when the individual requirements defined does
not conflict with each other.

= e.g., a requirement states that an event ‘a’ Is to occur before
another event ‘b’. But then another set of requirements states that
event ‘b’ should occur before event ‘a’.

8. Traceable:

= SRS is traceable when the source of each requirement is clear and
It facilitates the reference of each requirement in future.

21

1.0

20

3.0

4.0
5.0
6.0

Irvtrevd ucbiom
11 Purposes
1.2 S0 e
1.3 Definiions, Acronyms, and Abbreviations
1.4 Ralferancas
1.5 Crearviews
Thea Owerall Daescripticon
21 Product Perspective
211 Sy=tam Interface

213 Hardhwara |ntarface
214 Software Intaface
215 Communications Interfacs
216 Pdamory Constraints
21.7 Oparations
21.8 Site Adaplaton Reguiremants
22 Product Functions
2.3 Us=ar Characterstics
24 Constraints
2.5 Assumptions and Dapaendancy
26 Apportioning of Reguirermeanits
Specific Reguirnemeanis
31 Extarmal Interfacea
3z Fumctions
3.3 Parformance Raquirameants
3.4 Logical Databasa of Ragquirarmant
3.5 Dasign Constraints
351 Standards Compliance
3.6 Software System Alributes
361 Reliability

3.7 Organizing the Specific Requiremeants
Systerm Mode

as Additional Comments
Change Managamantl Procass
Drocumant Approvals
Supporting Information

Fig : SRS Document template

22

STEP S5 : REQUIREMENTS VALIDATION
WHY VALIDATION ?

= Errors present in the SRS will adversely affect the cost Iif they are

detected later in the development process or when the software is
delivered to the user.

Requirements
Document

Organizational
Knowledge

Organizational
Standards

. List of

Requirements

)

Validation

Problems

» Agreed

Fig: Requirement Validation

Actions

23

A

STEP 6: REQUIREMENTS MANAGEMENT
WHY 7?7

» To understand and control changes to system requirements.

Advantages of requirements management:
Better control of complex projects:

= Provides overview to development team with a clear
understanding of what, when and why software is to be delivered.

Improves software quality:

= Ensures that the software performs according to requirements to
enhance software quality.

24

\ 4

Reduced project costs and delays:

= Minimizes errors early in the development cycle, as it Is
expensive to ‘fix’ errors at the later stages of the development
cycle. As a result, the project costs also reduced.

Improved team communications:

= Facilitates early involvement of users to ensure that their needs
are achieved.

25

v

Requirements Management Process
Requirements management starts with planning,

Then, each requirement is assigned a unique “identifier” so that it
can be crosschecked by other requirements. Once requirements
are identified, requirements tracing is performed.

The objective of requirement tracing IS to
ensure that all the requirements are well understood and are
Included in test plans and test cases.

Traceability information is stored in a traceability matrix, which
relates requirements to stakeholders or design
module. Traceability matrix refers to a table that correlates
requirements.

26

Req. ID 1.1 1.2 1.3 2.1

1.1 U R

1.2 U

1.3 R R

2.1 R

22

23 R U

3.1

32

U->dependency
R-> weaker Relationship

Requirements change management

= |t I1s used when there iIs a request or proposal for a
change to the requirements.

|dentified Revised

Problem / Problem Analysis Change Analysis Change Requirements
and Change and Im Iemer?tation >
Specilization Costing P

Fig: Required change management

28

Thank Youl!!!

Software Engineering
Chapter 2

System Model

Chapter Two: System models
Course Outline: 3 hours, 5-7 Marks

2. System models (3 hours)
2.1. Context models

2.2. Behavioral models

2.3. Data and object models

\ 4

2.1. Context Models

= Contents model show what lies outside the system
boundaries.

* There exist only one circle or process that represents the
whole system.

= Purpose:to show expected inputs and outputs to and from
the system.

Flow Line A
(Data)

Process

'._\ ‘f

: /
Flow Line
(Information)

5

Context Models

Shapes used in Context Diagrams

External Entity

External . : : : .
AEEHIE An element that inputs data into an information system and / or retrieves data from the

information system.

Entity

Process

Process When an action takes place on data, turning it into Information. In the case of a Context
Diagram there is only 1 Process that represents the entire System.

Flow Line

s
Flow Ling lllustrates the movement of data from one entity / process to another. A Data Flow line is

supported by text stating what data is being sent / retrieved

Context Models
Context Diagrams

Example: Basic Calculator

A program is to be developed that allows a user to
enter in two different numbers. The software is to
either add, subtract, multiply or divide the numbers at

the users discretion.

Basic
Calculator
Number 1
Number 2
Type of Calculation

Result of Calculation

\ 4

2.2. Behavioral Model

Use case diagrams:

= shows the Interactions between a system and its
environment (actors).

Activity diagrams:

= shows the activities involved In a process or In data
processing.

Seqguence diagrams:

= shows interactions between objects within the system.

Start chart diagrams:

= shows how the system reacts to internal and external events.

\ 4

Elements of use case diagram:

. Actor:

Actor Is someone Interacting with use case (system
function).

Actor has responsibility toward the system (inputs),
and Actor have expectations from the system

(outputs)
/ :

Actor triggers use case.
Name

b. Use case
= System function (process—automated or manual).

= Each Actor must be linked to a use case, while some
use cases may not be linked to actors.

10

USER

Signature Verification System

Data Collection

/Acquistion

Train with data acquired

1
<<include>>

Display Trainining Result
<<extend>>

Train Result Analyse

Test Data Acquistion

Testing Data

<<include>>

Validate

ADMIN

11

\ 4

2.4. ER Model

= An Entity Relationship (ER) Diagram is a type of flowchart
that illustrates how “entities” such as people, objects or
concepts relate to each other within a system.

ER Diagrams are most often used to design or debug
relational databases in the fields of software engineering,
business information systems, education and research.

They use a defined set of symbols such as rectangles,
diamonds, ovals and connecting lines to depict the
Interconnectedness of entities, relationships and their
attributes.

\ 4

Components of ER Model

= Entity
A definable thing—such as a person, object, concept or event. Examples:
a customer, student, car or product. Typically shown as a rectangle.

Student Teacher Projects

= Attributes
A property or characteristic of an entity. Often shown as an oval or circle.

Name BirthDate

\ /
// en

Roll_No.

Components of ER Model
Attributes Types:

= Key

= Composite
CHICPECORCED
= Multivalue

= Derived Age

nnnn
.....

\ 4

Components of ER Model

Relationship

How entities act upon each other or are associated with each
other.

1

= One to one Entity Relationship Entity
= One to many Entity Relationship)— Entity
= Many to one
Entity Relationship Entity
= Many to many
: N ,
Entity Relationship Entity

ER Model Example[HMS]

s

e
e

PAGOress

N
M
A e (s

Medical record

E-R Diagram of Library Management System

G et

-2 <%

21

\ 4

2.4, Data Flow Diagram

= A data flow diagram (DFD) maps out the flow of information for any
process or system. It uses defined symbols like rectangles, circles and
arrows and short text labels, to show data inputs, outputs, storage
points and the routes between each destination.

* They can be used to analyze an existing system or model a new one.
= components of data flow diagrams:
External entity:

= Entities are source and destination of information.

= Entities are represented by a rectangles with their respective
names.

Process:
= Activities, operation and action taken on the data.
= Represented by Circle or Round-edged rectangles.

Data store:

Files or repositories that hold information for later use, such as a
database table or a membership form.

Data Flow.

\ 4

2.4, Data Flow Diagram

Motation Yourdon and

Coad

The route that data takes between the external entities, processes and
data stores.

DFD Notations:

Gane and
Sarson

External |:\
Entity

Process

Data Store [

Data Flow I

y
-

\ 4

2.4, Data Flow Diagram
Levels of DFD:

= Level O - Highest abstraction level DFD iIs known as Level
0 DFD, which depicts the entire information system as one
diagram concealing all the underlying details. Level 0 DFDs
are also known as context level DFDs.

= Level 1 - The Level 0 DFD is broken down into more
specific, Level 1 DFD. Level 1 DFD depicts basic modules
In the system and flow of data among various modules.

= Level 2 - At this level, DFD shows how data flows inside
the modules mentioned in Level 1.

2.4. Data Flow Diagram Example (SVS)

User

)

Get Result Provide Data

Signature

Recognition
System

Train System Get Result

with Data /

Admin

Context free DFD [level 0]

User

Data Storage

y

Data Acquisition

Image

1.0

Y

Preprocessing
2.0

A 4

Display Train
Result

A 4

‘GCaﬁ on
,\\5.0

h

Admin

Y

4.0

Signature Verification system DFD [level 1]

User

. [Image Resizing

Data Storage <

A

VO

Image Format
Conversion
2.2

Training Data

5o

Acquire Test
Data

Comparing

\ 4

51 5.2

Result

Admin 53

Signature Verification system DFD [level 2]

» Accuracy Graph

Display Training

A 4

Progress
4.2

27

Workout examples
- 0n Case study Examples

Software Engineering
Chapter 3

Architectural Design

Chapter Three: Architectural Design

Course Outline: 6 hours
1. Architectural design decisions
2. System organization
3. Decomposition styles
4. Control styles
5. Reference architectures

\ 4

What is Architectural Design?

It Is the design process for identifying the subsystems for
making a system and the framework for sub-system control
and communication.

The output of this design process Is a description of the
software architecture.

Architectural design iIs an early stage of the system design
process. It represents the link between specification and
design processes and Is often carried out in parallel with
some specification activities.

It involves identifying major system components and their
communications.

\ 4

Architectural Design
= |EEE defines architectural design as:

= “The process of defining a collection of hardware and
software components and their interfaces to establish the
framework for the development of a computer system.”

= The software system needs the architectural design to
represents the design of software.

\ 4

Architectural Design

= The software that Is built for computer-based systems can
exhibit one of many architectural styles.
Each style will describe a system category that consists of :

v" A set of components (e.g.: a database, computational modules) that
will perform a function required by the system.

v" A set of connectors will help in coordination, communication, and
cooperation between the components.

v" Conditions that how components can be integrated to form the
system.

v'Semantic models (logical models) that help the designer to
understand the overall properties of the system.
= The use of architectural styles is to establish a structure for
all the components of the system.

\ 4

Architectural Design

Software architectures can be designed at two levels of
abstraction:

= Architecture in the small

It Is concerned with the architecture of individual programs. At
this level, we are concerned with the way that an
Individual program is decomposed into components.

= Architecture in the large

It I1s concerned with the architecture of complex enterprise
systems that include other systems, programs, and program
components. These enterprise systems are distributed over
different computers, which may be owned and managed by
different companies.

\ 4

Architectural Design

Three advantages of explicitly designing and documenting
software architecture:

= Stakeholder communication:

Architecture may be used as a focus of discussion by system
stakeholders.

= System analysis:

Well-documented architecture enables the analysis of whether
the system can meet its non-functional requirements.

= |Large-scale reuse:

The architecture may be reusable across a range of systems or
entire lines of products.

\ 4

Uses of architectural models:
= As a way of facilitating discussion about the system design:

A high-level architectural view of a system is useful for
communication with system stakeholders and project
planning because it is not cluttered with detail. Stakeholders
can relate to i1t and understand an abstract view of the
system. They can then discuss the system as a whole
without being confused by detail.

= As a way of documenting an architecture that has been
designed:

The aim here Is to produce a complete system model that
shows the different components in a system, their interfaces
and their connections.

\ 4

Architectural Design decisions

Architectural design Is a creative process so the process
differs depending on the type of system being developed.
However, a number of common decisions span all design
processes and these decisions affect the non-functional
characteristics of the system:

v'lIs there a generic application architecture that can be used?

v"How will the system be distributed?

v"What architectural styles are appropriate?

v"What approach will be used to structure the system?

v"How will the system be decomposed into modules?

v"What control strategy should be used?

v"How will the architectural design be evaluated?

v"How should the architecture be documented?

\ 4

Architectural Design decisions

The particular architectural style should depend on the non-
functional system requirements:

= Performance: localize critical operations and minimize
communications. Use large rather than fine-grain
components.

= Security: use a layered architecture with critical assets In
the inner layers.

= Safety: localize safety-critical features in a small number of
sub-systems.

= Availability: include redundant components and
mechanisms for fault tolerance.

= Maintainability: use fine-grain, replaceable components.

\ 4

Architectural Conflicts

= Using large-grain components improves performance but
reduces maintainability.

* |ntroducing redundant data improves availability but makes
security more difficult.

» Localising safety-related features usually means more
communication so degraded performance.

\ 4

Architectural models

static models: which shows the major system components.

dynamic models: which show the organization of the
system when It Is executing.

Interface model: that defines sub-system interfaces.

Relationships model: such as a data-flow model that shows
sub-system relationships.

Distribution model: that shows how sub-systems are
distributed across computers.

\ 4

System Organization

Reflects the basic strategy that is used to structure a system.
Three types:

* The Repository model

= Client-Server model

= Abstract Machine (Layered) model

\ 4

System Organization
The Repository model:
= Sub-systems must exchange data. This may be done Iin two
ways:
v'Shared data is held in a central database or repository and
may be accessed by all sub-systems.

v'Each sub-system maintains its own database and passes
data explicitly to other sub-systems.

= \When large amounts of data are to be shared, the repository
model of sharing Is most commonly used a this Is an
efficient data sharing mechanism

System Organization
The Repository model Architecture:

Java
editor

UML Code
editors generators

Project
repository

Design Report
analyzer generator

\ 4

System Organization

The Repository model:

Name

Repository

Description

All data in a system is managed in a central repository that is accessible to all system
components. Components do not interact directly, only through the repasitary.

When used

You should use this pattern when you have a system in which large volumes of information
are generated that has to be stored for a long time. You may also use it in data-driven
systems where the inclusion of data in the repository triggers an action or toal,

Advantages

Companents can be independent--they do not need to know of the existence of other
components. Changes made by one component can be propagated to all components, Al
data can be managed consistently (e.q., backups dane at the same time) as it is all in one
place,

Disadvantages

The repasitory is a single point of failure so problems in the repository affect the whale
system. May be inefficiencies in organizing all communication through the repository.
Distributing the repository across several computers may be difficult

\ 4

System Organization
The Client-Server model:

= Distributed system model which shows how data and
processing Is distributed across a range of components, but
can also be implemented on a single computer.

= Set of stand-alone servers which provide specific services
such as printing, data management, etc.

= Set of clients which call on these services.

= Network which allows clients to access servers.

System Organization

The Client-Server Architecture:

Client 1 Client 2 Client 3 Client 4

Internet

Picture
server

Photo store

Catalog
server

Library
catalogue

Video
server

Film store

Web
server

Film and
photo info.

\ 4

System Organization

The Client-Server Architecture:

Name

Client-server

Description

In a client-server architecture, the functionality of the system is organized into services, with
each service delivered from a separate server, Clients are users of these services and access
servers to make use of them,

When used

Used when data in a shared database has to be accessed from a range of locations. Because
servers can be replicated, may also be used when the load on a system is variable.

Advantages

The principal advantage of this model is that servers can be distributed across a network.
General functionality (e.g., a printing service) can be available to all clients and does not
need to be implemented by all services.

Disadvantages

Each service is a single paint of failure so susceptible to denial of service attacks or server
failure, Performance may be unpredictable because it depends on the network as well as the
system. May be management problems if servers are owned by different organizations.

\ 4

System Organization
The Layered model:

= Used to model the interfacing of sub-systems.

= Organizes the system into a set of layers (or abstract
machines) each of which provide a set of services.

= Supports the incremental development of sub-systems in
different layers. When a layer interface changes, only the
adjacent layer is affected.

System Organization
The Layered Architecture:

User interface I
User interface management
Authentication and authorization

Core business logic/application functionality
System utilities

System support (OS, database etc.)

\ 4

System Organization

The Layered Architecture:

Name

Layered architecture

Description

Organizes the system into [ayers with related functionality associated with each layer. A layer
provides services to the layer above it so the lowest-level layers represent core services that
are likely to be used throughout the system.

When used

Used when building new facilities on top of existing systems; when the development is
spread across several teams with each team responsibility for a layer of functionality; when
there is a requirement for multi-level security.

Advantages

Allows replacement of entire layers so long as the interface is maintained. Redundant
facilities (e.q., authentication) can be provided in each layer to increase the dependability of
the system.

Disadvantages

In practice, providing a clean separation between layers is often difficult and a high-level
layer may have to interact directly with lower-level layers rather than through the layer
immediately below it. Performance can be a problem because of multiple levels of
interpretation of a service request as it is processad at each layer.

Thank Youl!!!

Software Engineering
Chapter 3

Architectural Design

Chapter Three: Architectural Design

Course Outline: 6 hours
1. Architectural design decisions
2. System organization
3. Decomposition styles
4. Control styles
5. Reference architectures

\ 4

Modular Decomposition styles?
Styles of decomposing sub-systems into modules.

Decomposition Example

Large Unsolved Problem

Combined
solution

\ 4

Modular Decomposition styles?
Sub system and Components

= A sub-system is a system In its own right whose operation Is
Independent of the services provided by other sub-systems.

= A module Is a system component that provides services to
other components but would not normally be considered as
a separate system.

* To make It short :
v a subsystem can exist without its parent system.

v"a component cannot be used alone and must be part of a
system to exist.

Modular Decomposition styles?
Sub system and Components
To take an analogy :
v" a car is a sub-system of travel infrastructure.
v a wheel is a component of the car.

\ 4

Modular Decomposition styles?

= structural level where sub-systems are decomposed iInto
modules.

= Two modular decomposition models
v" Object Oriented decomposition:

An object model where the system is decomposed into
Interacting object.

v Function oriented decomposition :

A pipeline or data-flow model where the system is
decomposed into functional modules which transform
Inputs to outputs.

\ 4

Modular Decomposition?
Object models

= Structure the system into a set of loosely coupled objects
with well-defined interfaces.

= Object-oriented decomposition IS concerned with
Identifying object classes, their attributes and operations.

= When implemented, objects are created from these classes
and some control model used to coordinate object
operations.

Modular Decomposition?
Object models (Invoice processing system)

Customer Receipt
customer# invoice#
name il - » date
address ' : ! t

ess | Invoice | amoun
credit period T | customerd
[invoice# [
I date |
: amount '
I customer :

Payment '~ | issue () :
ivoice# sendReminder () |
date - — — | acceptPayment () |
amount sendReceipt () -
customers#

\ 4

Modular Decomposition?
Object models (advantages)

= Objects are loosely coupled so their implementation can be
modified without affecting other objects.

* The objects may reflect real-world entities.
= OO implementation languages are widely used.

= However, object interface changes may cause problems and
complex entities may be hard to represent as objects.

\ 4

Modular Decomposition?
Functional models

= In function-oriented design, the system is divided into
many smaller sub-systems known as functions. These
functions are capable of performing significant task in the
system. The system Is considered as top view of all
functions.

= This design mechanism divides the whole system into
smaller functions, which provides means of abstraction by
concealing (providing the means for data hiding) the
Information and their operation. These functional modules
can share information among themselves by means of
Information passing and using Information available
globally. 10

Modular Decomposition?
Functional models

Invoice processing system

11

\ 4

Modular Decomposition?
Functional model design process:

= The whole system is seen as how data flows In the system
by means of data flow diagram.

= DFD depicts how functions changes data and state of entire
system.

= The entire system Is logically broken down into smaller
units known as functions on the basis of their operation In
the system.

= Each function is then described at large.

12

Modular Decomposition?

Functional model Advantages

Assignment 2

Refer: lan Sommerville’s book from Library

13

\ 4

Control styles/models
Are concerned with the control flow between sub-systems.

Two generic control styles
v Centralized control

One sub-system has overall responsibility for control and
starts and stops other sub-systems.

v Event-based control

Each sub-system can respond to externally generated events
from other sub-systems or the system’s environment.

\ 4

Control styles/models
Centralized control

A control sub-system takes responsibility for managing the
execution of other sub-systems.

v' Call-return model: Top-down subroutine model where
control starts at the top of a subroutine hierarchy and moves
downwards. Applicable to sequential systems.

v"Manager model: Applicable to concurrent systems. One
system component controls the stopping, starting and
coordination of other system processes.

Centralized Control styles/models

Call-return model:

Routine 1

‘ Routine 2 I ‘ Routine 3 I

‘ Routine 1.1 I ‘ Routine 1.2 I \ Routine 3.1 I ‘ Routine 3.2 I

v The main program can call Routines 1, 2 and 3; Routine 1
can call Routines 1.1 or 1.2;: Routine 3 can call Routines 3.1
or 3.2; and so on.

16

Centralized Control styles/models
Manager model (real time system control):

Sensor Actuator
processes processes

System
controller

Computation User Fault
processes interface handler

17

\ 4

Control styles/models
Event-driven systems:
= Two principal event-driven models
v'Broadcast models.
v Interrupt-driven models.
v Broadcast model

= Sub-systems register an interest in specific events. When
these occur, control Is transferred to the sub-system which
can handle the event.

= Control policy is not embedded In the event and message
nandler. Sub-systems decide on events of interest to them.

= However, sub-systems don’t know If or when an event will
ne handled.

\ 4

Event Driven control styles/models
v’ Broadcast model

Selective broadcasting

E’.ub—syﬁ'—fEu
1

Sub-system Sub-system

3

Sub-system
4

-

Y

| Event and message handler .

= components register an interest in specific events. When
these events occur, control is transferred to the component
that can handle the event.

19

\ 4

Event-driven Control styles/models

Interrupt-driven models.

= Used In real-time systems where fast response to an event is
essential.

» There are known interrupt types with a handler defined for
each type.

= Each type Is associated with a memory location and a
hardware.

= Allows fast response but complex to program and difficult
to validate.

Event-driven Control styles/models

v Interrupt-driven models.

Interrupts

L

Interrupt
vector

Handler Handler Handler Handler
2 i}

1 3
Process Process
2 4

21

Thank Youl!!!

Software Engineering
Chapter 3

Architectural Design

Chapter Three: Architectural Design

Course Outline: 6 hours
1. Architectural design decisions
2. System organization
3. Decomposition styles
4. Control styles
5. Reference architectures

Objectives

‘0 explain the advantages and disadvantages of
different distributed systems architectures

To discuss two principal models of distributed systems
architecture -client-server and distributed object
architectures

To understand the concept of object request brokers
and the principles underlying the CORBA standards

To Introduce peer-to-peer and service-oriented
architectures as new models of distributed computing.

Topics covered

Multiprocessor architectures
Client-server architectures
Distributed object architectures
Inter-organisational computing

Distributed systems

" Virtually all large computer-based systems are now
distributed systems.

" Here, Information processing is distributed over

several computers rather than confined to a single
machine.

* Distributed software engineering is therefore very
important for enterprise computing systems.

System types

= Personal systems that are not distributed and that are
designed to run on a personal computer or
workstation.

= Embedded systems that run on a single processor or
on an integrated group of processors.

= Distributed systems where the system software runs
on a loosely integrated group of cooperating
processors linked by a network.

Distributed system characteristics(Advantages)

Resource sharing
— Addistributed system allows sharing of hardware and software
resources such as disks, printers, files & compilers.
Concurrency

— Here, several processes may operate at the same time on separate
computers on the network called concurrent processing.

— Concurrent processing to enhance performance.
Scalability

— It is the capability of the system that can be increased by adding new
resources to cope with new demands in the system.

— Increased throughput [how many units of information a system can
process in a given amount of time] by adding new resources.

Fault tolerance

— The availability of several computers & potential for replicating
information means the distributed system can be tolerant of some
hardware and software failures i.e.

— The ability to continue in operation after a fault has occurred.

Distributed system disadvantages

= Complexity
— Typically, distributed systems are more complex than centralised

systems; makes it more difficult to understand their emergent properties
& to test these systems.

— Example- rather than the performance of the system being dependent
on execution speed of one processor, it depends

 on the network bandwidth and
» speed of the processor on the network
= Security

— The system may be accessed from several different computers, & the
traffic on the network may subject to eavesdropping.

— This makes it more difficult to ensure that the integrity of the data in
the system is maintained &

— The services are not degraded by the denial of attack . I.e.
— They are more susceptible to external attack.

Distributed system disadvantages

= Manageability

— The computers in a system may be different types and run on
different versions of operating system.

— Fault in one machine may propagate to other machines with
unexpected consequences.

— Means more effort required for system management.
= Unpredictability

— All users of the WWW know, distributed systems are unpredictable in
their response.

— Unpredictable responses depending on the system organisation and
network load.

— As all these may vary over a short period, the time taken to a user
request may vary dramatically from one request to another.

Distributed systems architectures

= (Client-server architectures
— Distributed services which are called on by clients.

— Servers that provide services are treated differently from
clients that use services.

= Distributed object architectures
— No distinction between clients and servers.

— The server may be thought of as a set of interactive
objects whose location is irrelevant.

— Any object on the system may provide and use services
from other objects.

10

Middleware

The components of the distributed system may be implemented on different
programming language & may execute on the completely different

v types of processors

v Models of data

v" Information representation &
v" Protocols

Thus, it requires to manage these diverse parts, ensure that they communicate
and exchange data.

Middleware refers to software that manages and supports the different
components of a distributed system. In essence, it sits in the middle of the
system.

Middleware is usually off-the-shelf [E.g.: MS package] rather than specially
written software.

Examples

v" Transaction processing monitors;
v" Data converters;

v" Communication controllers.

11

3.6 Multiprocessor architectures

= Simplest distributed system model where System composed of
multiple processes which may (but need not) execute on
different processors.

= This process Is common In large real-time systems. These
systems:

v Collect information
v Make decision using information &

v Send signals to actuator [A mechanism that causes a device
to be turned on or off, adjusted or moved] to modify the
system’s environment.

= Distribution of process to processor may be pre-determined or
may be under the control of a dispatcher [Software that
determines what pending tasks should be done next and
assigns the available resources to accomplish it].

Example - A multiprocessor traffic control

Sensor Traffic flow
Q\ S -
Sensor -
control Display
M process \process/
Trafficflovsrsrsad
cameras Operator consoles

Traffic light contr
processor

V

Light
control
process

IOOOl IOOO|
X

Ioool IOOOl
000

Traffic lights

13

Example - A multiprocessor traffic control system

= In fig. — a simplified model of the traffic control
system Is shown.

= A set of distributed sensors collects information on
the traffic flow & processes locally.

= Operators make decisions using this information &
give Instruction to a separate traffic light control
process

= Here, there are separate logical processes for
managing sensors, control room & traffic light which
run on separate processors.

3.7 Client-server architectures

The application Is modelled as a set of servers that
provide services and a set of clients that use these
services.

Clients know of servers but servers need not know of
clients.

Clients and servers are separate logical processes as
shown in fig below (Fig.1)

Several server processes can run on a single server
processor so there is not necessarily 1:1 mapping
between processors & processes.

Example - A client-server system

Fig. 1

Example - Computers in a C/S network

sl, 2 Network 3 oA Server
' computer
X2 C1 :
Client
computer
cS, €6, c7 c8, c9 cl10,c¢11,c12

Fig.2

Example - Computers in a C/S
network

* Fig. 2 shows the physical architecture of the
system with six client & two server computers.

* These can run the client & server processes as
shown in Fig. 1

Thin and fat clients

The simplest client server architecture is called two tier client
server architecture, where an application is organized as

v"a server(or multiple identical servers) &

v a set of clients
The two tier client server architecture can take two forms:
Thin-client model

v In a thin-client model, all of the application processing and data
management is carried out on the server.

v" The client is simply responsible for running the presentation software.

Fat-client model
v" In this model, the server is only responsible for data management.

v The software on the client implements the application logic and the
Interactions with the system user.

Thin and fat clients

Presentation
Server
Thin-client . Data management
model Application processing
Presentation
Application processing Server
Fat-client
model Data management

20

Thin client model

= Used when Iegacy SYSteMS [software that has been around a
long time and still fulfills a business need, e.g. voicemail system] adl'é
migrated to client server architectures.

= The legacy system acts as a server In its own right
with a graphical interface implemented on a client.

= A major disadvantage Is that it places a heavy
processing load on both the server and the network.

Fat client model

More processing IS delegated to the client as the
application processing is locally executed.

The server Is essentially a transaction server that
manages all database transactions.

Example- Banking ATM system, where ATM Is the
client & the server is a mainframe running the
customer account database.

The hardware in the teller machine carries out a lot of
customer related processing associated with a
transaction.

More complex than a thin client model especially for
management. New versions of the application have to
be installed on all clients.

A client-server ATM system

ATM

ATM

ATM

Account server
Tele- Customer
processing account
monitor database

e

ATM

23

A client-server ATM system

Fig. above is the ATM distributed system

The ATMs are not connected directly to the customer
database but to a teleprocessing monitor.

It I1s a middleware system that organizes
communication with remote clients & serializes the
client transaction processing by the database.

Using serial transaction means that the system can
recover from faults without corrupting system data.

Disadvantages-Fat client model

The fat-client model distributes processing more
effectively than thin client model but the system
management is more complex

Application functionality 1s spread over many
computers

When the application software iIs to be changed,
reinstallation is needed on every computer

This can be a major cost if there are hundreds of
clients In the system.

Disadvantages- Two-tier architecture

= The three logical layers-presentation, application
processing & data management must be mapped onto
two computer systems-the client & the server.

= This may either be problems with scalability &
performance If the thin client model is chosen, or the

problems of system management if the fat client
model iIs used

= To avoid these issues, a three-tier client server
architecture iIs used.

Three-tier architectures

= |n a three-tier architecture,

v' the presentation,
v" the application processing &

v" the data management are logically separate processes that execute on a separate
processor.

= Allows for better performance than a thin-client
approach and Is simpler to manage than a fat-client
approach.

= A more scalable architecture - as demands Increase,
extra servers can be added.

A 3-tier C/S architecture

Presentation

Server

Application
processing

Server

Data
management

28

Example- An internet banking system

SQL query

Example- An internet banking system

= Here, the

v Bank’s customer database (usually hosted on a mainframe computer) provides
data management services;

v' a web server provides application services such as transferring of cash,
generate statements, pay bills etc. &

v The user’s own computer with an internet browser is the client.

= This system Is scalable because it Is relatively
easy to add new web servers as the number of
customers increase.

Advantages-A 3-tier C/S architecture

"he use of three-tier architecture iIs this case allows
the information transfer between the web server and
the database server to be optimized.

Network traffic i1s reduced.

More rapid response to clients.

Efficient middleware that supports database queries
In SQL is used to handle information retrieval from
the database.

Multi-tier Architecture

= At times it Is appropriate to extend three tier
architecture to multi-tier where applications need to
access and use the data from different databases

= In such case , an integration server IS positioned
between application servers and database servers.

= The integration server collects the distributed data &
presents it to the application as if it were from single
database.

32

Use of C/S architectures

Architecture

Two-tier C/S
architecture with
thin clients

Two-tier C/S
architecture with
fat clients

Three-tier or
multi-tier C/S
architecture

Applications

Legacy system applications where separating application processing and
data management 1s impractical.

Computationally-intensive applications such as compilers with little or
no data management.

Data-intensive applications (browsing and querying) with little or no
application processing.

Applications where application processing is provided by off-the-shelf
software (e.g. Microsoft Excel) on the client.

Applications where computationally-intensive processing of data (e.g.
data visualisation) is required.

Applications with relatively stable end-user functionality used in an
environment with well-established system management.

Large scale applications with hundreds or thousands of clients
Applications where both the data and the application are vo latile.
Applications where data from multiple sources a re integrated.

3.8 Distributed object architectures

= There Is no distinction in a distributed object architectures between
clients and servers.

= Each distributable entity is an object that provides services to other
objects and receives services from other objects.

= Objects may be distributed across a number of computers on a
network.

* Object communication is through a middleware system called an
object request broker.

= Itsrole is to provide a seamless interface between objects.

= It provides set of services that allows objects to communicate & to
be added to & removed from the system

= However, distributed object architectures are more complex to
design than C/S systems.

Distributed object architecture

ol

02

03

S(0l)

S(02) S(03)

S(o4)

Obj ect request broker

35

Advantages of distributed object architecture

It allows the system designer to delay decisions
on where and how services should be provided.

v' Service providing objects may execute on any node of the network.
v There is no need to decide in advance where application logic objects are located.

It is a very open system architecture that allows
new resources to be added to it as required.

The system is flexible and scalable.

It is possible to reconfigure the system
dynamically with objects migrating across the
network as required.

Uses of distributed object architecture

= As a logical model that allows to structure and
organise the system. In this case, one thinks about
how to provide application functionality solely in
terms of services and combinations of services.

= As a flexible approach to the implementation of
client-server systems. The logical model of the
system Is a client-server model but both clients and
servers are realised as distributed objects
communicating through a common communication
framework.

A data mining system

Database 1 Repor t gen. I
Integrator 1

Database 2

| ntegrator 2

Database 3 /
Display

Data mining system

= Here, each database can be encapsulated as a
distributed object with an interface that provides read

only access to Its data.

* |ntegrator objects are each concerned with specific
types of relationships, & they collect from all the
databases to try to deduce the relationships.

= There might be integrator object that is concerned
with seasonal variations in goods sold & another that
IS concerned with relationships between different

types of goods.

Data mining system

» The logical model of the system Is not one of service

provision where there are distinguished data
management services.

= |t allows the number of databases that are accessed to
be increased without disrupting the system.

= |t allows new types of relationship to be mined by
adding new Integrator objects.

CORBA

= CORBA is an international standard for an Object
Request Broker - middleware to manage
communications between distributed objects.

= Middleware for distributed computing Is required at 2
levels:

— At the logical communication level, the middleware allows objects on different
computers to exchange data and control information;

— At the component level, the middleware provides a basis for developing
compatible components. CORBA component standards have been defined.

CORBA application structure-
Object Management architecture(Siegal,1998)

Application Domain Horizontal C ORBA
obj ects facilities facilities

Obj ect request broker

(bbb)

42

Application structure

This architecture above proposes distribution application should be
made up of number of components

Application objects -that are designed & implemented for the
application.

Standard objects -that are defined by the OMG(Object Management
Group) for a specific domain which cover Insurance, health care etc.

Fundamental CORBA services that provides basic distributed
computing service such as directories and security management.

Horizontal CORBA facilities such as user interface facilities.

v The term horizontal facilities suggests that these facilities are
common to many application domains

CORBA standards

= COBRA standards cover all aspect of the above vision.
= There are four major elements to these standards.
= An object model for application objects

A CORBA object is an encapsulation of state with a well-defined,
language-neutral interface defined in an IDL (interface definition
language).

= An object request broker that manages requests for object services.

= A set of general object services likely to be required by many
distributed applications (e.g. Directory service)

= Aset of common components built on top of these basic services.

CORBA objects

CORBA objects are comparable, in principle, to
objects in C++ and Java.

They MUST have a separate interface definition that
IS expressed using a common language (IDL) similar
to C++.

There Is a mapping from this IDL to programming
languages (C++, Java, etc.).

Therefore, objects written in different languages can
communicate with each other.

Object request broker (ORB)

= The ORB handles object communications. It knows
of all objects in the system and their interfaces.

= Using an ORB, the calling object binds an IDL stub
that defines the interface of the called object.

= Calling this stub results in calls to the ORB which
then calls the required object through a published IDL
skeleton that links the Interface to the service
Implementation.

ORB-based object communications

ol

S(ol)

IDL
stub

02

S(02)

|

IDL
skeleton

Obj ect Request Broker

47

Inter-ORB communications

ORBs are not usually separate programs but are a set
of objects in a library that are linked with an
application when it is developed.

ORBs handle communications between objects
executing on the sane machine.

Several ORBS may be available and each computer
In a distributed system will have its own ORB.

Inter-ORB communications are used for distributed
object calls.

CORBA services

= Naming and trading services

These allow objects to discover and refer to other objects on the network.

= Notification services

These allow objects to notify other objects that an event has occurred.

= Transaction services

These support atomic transactions and rollback on failure.

Transactions are fault-tolerance facility that supports recovery from errors
during an update operation.

If an object update operation fails, then the object state can be rolled back to its
state before the update was started.

3.9 Inter-organizational computing

For security and inter-operability reasons, most distributed
computing has been implemented at the organizational level.

An organization has a number of servers & spreads its computation
load across these.

Because these all located within the same organization, local
standards, management and operational processes apply.

Newer models of distributed computing have been designed to
support inter-organizational computing rather than intra-
organization distributed computing where different nodes are
located in different organizations.

Two of these approaches are discussed here:
1. Peer to Peer architectures
2. Service oriented architectures

Peer-to-peer architectures

= Peer to peer (p2p) systems are decentralized systems
where computations may be carried out by any node
In the network.

= The overall system is designed to take advantage of
the computational power and storage of a large
number of networked computers.

= Most p2p systems have been personal systems but
there Is increasing business use of this technology.

P2p architectural models

One can look at architecture of P2P applications
from two perspectives:

1. The logical network architecture

— Decentralized architectures:;
— Semi-centralized architectures.

2. Application architecture

— The generic organization of components in each architecture type;
making up a p2p application.

e Here, focused on network architectures.

Decentralized p2p architecture

Decentralized p2p architecture

= Here, the nodes in the network are not simply
functional elements but are also communication
switches that can route data & control signals from
one node to another

= Fig above represents a decentralized document
management system-used by the consortium of
researchers to share documents.

= Each member maintains own document store

Decentralized p2p architecture

However, when the document is retrieved, the node retrieving
that document makes it available to other nodes

Someone who needs the document issues a search command
that Is sent to nodes in that locality .

These nodes check whether they have the document &
If so return to the requestor
If they do not have route search to another node

When the document is finally discovered , the node can route
the document back to the original requestor

Semi-centralized p2p architecture

Discovery
server
\

// \\\
~
/o
O

56

Semi-centralized p2p architecture

= With the sue of decentralized architecture the
are obvious overheads In the system in that

v" same search may be process by many different nodes &
v" there is significant overhead in replicated peer communication

= Alternative- semi centralized where, within the
network one or more nodes act as servers to
facilitate node communications.

Service-oriented architectures

= Based around the notion of externally provided
services (web services).

= A web service Is a standard representation for some
computational or information resourse that are
accessible across the web

— Atax filing service could provide support for users to fill in their tax forms and
submit these to the tax authorities.

Web service

= An act or performance offered by one party to
another. Although the process may be tied to a
physical product, the performance Is essentially
Intangible and does not normally result in ownership
of any of the factors of production.

= Service provision IS therefore independent of the
application using the service.

Hnd

Service
requestor

Web services

Service
registry

Publish

Service

provider

Bind

(Service

60

Services and distributed objects

Provider independence.
Public advertising of service availability.
Potentially, run-time service binding.

Opportunistic construction of new services through
composition.

Pay for use of services.
Smaller, more compact applications.
Reactive and adaptive applications.

Services standards

= Services are based on agreed, XML-based
standards so can be provided on any platform
and written in any programming language.

Key standards

v" SOAP - Simple Object Access Protocol;
v" WSDL - Web Services Description Language;
v' UDDI - Universal Description, Discovery and Integration.

Services scenario

An in-car information system provides drivers with
Information on weather, road traffic conditions, local
Information etc.

This Is linked to car radio so that information is
delivered as a signal on a specific radio channel.

The car Is equipped with GPS receiver to discover its
position and,

based on that position, the system accesses a range of
Information services.

Information may be delivered In the driver’s
specified language.

Automotive system

Weather
info

Trandator

Info
stream

Language
info

Facilities
info

Road traffic info

Road
locator

\

Mobile Info Service

Collatesinformation

command
gps coord

gps

Svicedsovary

Finds available
services

v

Radio

Trandates dig ital
info stream to
radio signal

Receiver Transmitter User inter face
Receives Serospodtionand Receives request
infamaiiondream infamationreq.es from usgr
from services to services

Locator

Discoy_ers car
position

In-car software sy stem

64

Layered application architecture

* Presentation layer

Concerned with presenting information(results of a
computation) to the user with all the user
Interaction.

= Application processing layer
Concerned with Implementing the logic of the
application.
= Data management layer

Concerned with managing all the database
operations.

Application layers

Thank Youl!!!

Software Engineering
Chapter 4

Real Time System

Overview

Real Time System
Real Time Operating System
Monitoring and Control System
Data Acquisition System

Real Time System

= System where the correct functioning of the system
depends on the results produced by the system and
the time at which these results are produced.

= Systems which monitor and control their
environment.

= Associated with hardware devices

v" Sensors: Collect data from the system environment;

v Actuators: Change (in some way) the system's environment;

= Time Is critical i1.e. Real-time systems must respond
within specified times.

Real Time System

= Soft real-time system
Operation is degraded, If results are not produced
according to the specified timing requirements.

= Hard real-time system:
Operation is incorrect, If results are not produced
according to the timing specification

Stimulus/Response Systems

= Given a stimulus [event that evokes a specific
function] , the system must produce a response within
a specified time.

v" Periodic stimuli: Stimuli which occur at predictable
time iIntervals. E.g.: a temperature sensor may be
polled 10 times per second.

v Aperiodic stimuli: ~ Stimuli ~ which occur at
unpredictable times. E.g.: a system power failure may
trigger an interrupt which must be processed by the
system.

Architectural Considerations

= Because of the need to respond to timing demands
made by different stimuli/responses, the system
architecture must allow for fast switching between

stimulus/events.

= Timing demands of different stimuli are different so a
simple sequential loop is not usually sufficient.

A real-time system model

Qg pes

Sensor/actuator processes

Microphone,
thermistor

Stimulus

Loudspeaker,
LED

[Actuator D

Response

Sensor Data Actuator
contr ol processor confrol

System elements

» Sensor control processes

Collect information from sensors. May buffer
information collected in response to a sensor
stimulus.

» Data processor

Carries out processing of collected information and
computes the system response.

» Actuator control Processes
Generates control signals for the actuators.

Real-time operating systems

» Real-time operating systems are specialised
operating systems which manage the processes in
the RTS.

» Responsible for process management and
resource (processor and memory) allocation.

» May be based on a standard kernel which

is used unchanged or modified for a particular
application.

» Do not normally include facilities such as file
management.

10

Examples:

=\/xWorks
"QNX
=eCos
=sRTLINnuUX

»Especially VxWorks has a long history in critical
applications, for example: In cars and various NASA
space platforms.

Operating system components

Real-time clock
- Provides information for process scheduling.

Interrupt handler
- Manages aperiodic requests for service.

Scheduler

- Chooses the next process to be run.

Resource Mmanager
- Allocates memory and processor resources.

Dispatcher
- Starts process execution.

w

-

-

-

-

12

1.3. Monitoring and control systems

= Important class of real-time systems.

= Monitoring systems examine sensors and report their
results.

= Control systems take sensor values and control
hardware actuators.

RTS design process

ldentify stimuli and associated responses.

Define the timing constraints associated with each
stimulus and response.

Design algorithms for stimulus processing and
response generation.

14

Monitoring System = burglar alarm systems

= Sensors
v Movement detectors, window sensors, door sensors;

v 50 window sensors, 30 door sensors and 200 movement
detectors:;

v \oltage drop sensor.

= Actions

v When an intruder is detected, police are called automatically:;
v" Lights are switched on in rooms with active sensors;

v An audible alarm is switched on;

v The system switches automatically to backup power when a
voltage drop iIs detected.

Stimuli to be processed

= Power failure
v" Generated aperiodically by a circuit monitor.

v"When received, the system must switch to backup
power within 50 ms.

* |Intruder alarm
v" Stimulus generated by system sensors.

v Response is to call the police, switch on building
lights and the audible alarm.

Timing requirements

Stimulus/Response

Timing requirements

Power fail interrupt

The switch to backup power must be completed
within a deadline of 50 ms.

Door alarm

Each door alarm should be polled twice per
second.

Window alarm

Each wimdow alarm should be polled twice per
second.

Movement detector

Each movement detector should be polled twice
per second.

Audible alarm

The audible alarm should be switched on within
1/2 second of an alarm being raised by a sensor.

Lights switch The lights should be switched on witlhun 1/2
second of an alarm being raised by a sensor.
Comm unications Thecall to the police should be started within 2

seconds of an alarm bemng raised by a sensor.

17

Burglar alarm system processes

400 Hz &0 Hz 100 Hz

Control systems

= A burglar alarm system is primarily a monitoring
system. It collects data from sensors but no real-time
actuator control.

= Control systems are similar but, in response to sensor
values, the system sends control signals to actuators.

= An example of a monitoring and control system is a
system that monitors temperature and switches
heaters on and off.

19

Data acquisition system

= Collect data from sensors for subsequent processing
and analysis.

» Data collection processes and processing processes
may have different periods and deadlines.

= Data collection may be faster than processing e.g.
collecting information about an explosion

20

Data acquisition architecture

Sensors (each da ta flow 1s a sensor v alue)

Sensor Sensor
®\ identifier and identifier and
Sensor
(::) process @

21

Thank Youl!!!

Software Engineering
Chapter 5

Software Reuse

Chapter Three: Software reuse

Course Outline: 3 hours
1. The Software Reuse
2. Design patterns
3. Application framework
4. MV C patterns
5. Application system reuse

\ 4

Software reuse

= Software engineering has been more focused on
original development but It i1s now recognised that to
achieve better software, more quickly and at lower

cost, we need to adopt a design process that iIs based
on systematic software reuse.

\ 4

Reuse-based software engineering

= Application system reuse
The whole of an application system may be reused either

v by incorporating it without change into other systems
(COTS reuse) or

v'by developing application families that have common
architecture

= Component reuse

v"Components of an application from sub-systems to single
objects may be reused

*= Object and function reuse

v'Software components that implement a single well-
defined object or function may be reused

\ 4

being trustworthy and

Benefits of Software Reuse .i.ue

Increased dependability

Reduced process risk

Effective use of specialists

Standards compliance

Accelerated development

Explanation

Reused software, which has been tried and tested in working systems, should
be more dependable than new software. Its design and implementation faults
should have been found and fixed.

The cost of existing software is already known, whereas the costs of development
are always a matter of judgment. This is an important factor for project
management because it reduces the margin of error in project cost estimation.
This is particularly true when relatively large software components such as
subsystems are reused.

Instead of doing the same work over and over again, application specialists can
develop reusable software that encapsulates their knowledge.

Some standards, such as user interface standards, can be implemented as a set of
reusable components. For example, if menus in a user interface are implemented
using reusable components, all applications present the same menu formats to
users. The use of standard user interfaces improves dependability because users
make fewer mistakes when presented with a familiar interface.

Bringing a system to market as early as possible is often more important than
overall development costs. Reusing software can speed up system production
because both development and validation time may be reduced.

\ 4

Problems of Software Reuse

Increased maintenance costs If the source code of a reused software system or component is not available,
then maintenance costs may be higher because the reused elements of the
system may become increasingly incompatible with system changes.

Lack of tool support Some software tools do not support development with reuse. It may be
difficult or impossible to integrate these tools with a component library
system. The software process assumed by these tools may not take reuse
into account. This is particularly true for tools that support embedded
systems engineering, less so for object-oriented development tools.

Not-invented-here syndrome Some software engineers prefer to rewrite components because they
believe they can improve on them. This is partly to do with trust and partly
to do with the fact that writing original software is seen as more
challenging than reusing other people’s software.

Creating, maintaining, and Populating a reusable component library and ensuring the software
using a component library developers can use this library can be expensive. Development processes
have to be adapted to ensure that the library is used.

Finding, understanding, and Software components have to be discovered in a library, understood and,
adapting reusable sometimes, adapted to work in a new environment. Engineers must be
components reasonably confident of finding a component in the library before they

include a component search as part of their normal development process.

5.1. Reuse landscape

Design Architectural
Patterns Patterns

Application Software Product CaTs ERP Systems
Frameworks Lines Integration

Configurable Vertical Legacy System
Applications Wrapping
Component-Based Model-Driven Service-Oriented
Software Engineering Engineering Systems
Aspect-Oriented Program Program

Software Development Generators Libraries

\ 4

Reuse planning factors
* The development of schedule for the software
* The expected software lifetime

= The background, skills and experience of the
development team

» The criticality of the software and its non-functional
requirements

= The application domain
= The execution platform for the software

\ 4

5.2. Design Patterns

* In software engineering, a design pattern Is a
general repeatable solution to a commonly occurring
problem In software design.

= A design pattern isn't a finished design that can be
transformed directly into code.

= |t Is a description or template for how to solve a
problem that can be used In many different
situations.

\ 4

Pattern elements
There are four essential elements of the design patterns:
= Name
v A name that is a meaningful reference to the pattern
= Problem description.

v’ Description of the problem & explains what patterns may be
applied.

= Solution description.

v Not a concrete design but a template for a design solution that can
be Instantiated In different ways.

= Consequences
v The results and trade-offs of applying the pattern

v Helps the designer to understand whether a pattern can be
effectively applied in particular situation

Pattern elements

Two graphical representations of same data.

Observer 1

50

hote

Observer 2

11

\ 4

5.3. Framework

A framework Is something that gives programmers most of the
basic building blocks they need to make an app.

Imagine you’re cooking feast for 20 people. You’re going to
need an oven, a stove, a fridge, a sink, probably hundreds of
Ingredients, utensils, plates — etc.

A framework is like a fully stocked kitchen. It has all of these
things ready for you to cook and you just need to work out what
to make with it all!

But, there are a few downsides to having a ready made kitchen.
Maybe the oven isn’t quite the right size, or there aren’t quite
enough plates, or you’re lacking some ingredients, but for the
most part, everything you want is in there where you can find it
and you can make it work.

12

\ 4

Framework

Programming without a framework is like trying to build the
perfect kitchen from scratch before preparing the meal.

irst you need to decide what you’re going to make. If it
needs an oven, you can decide to either buy the perfect
oven, or build your own makeshift one.

If your ingredients need refrigeration, you can work out
some way to keep them cold.

Maybe you like certain brands of ingredients? Well, you’ve
got the freedom to buy just those brands, instead of what a
pre-stocked kitchen might give you work.

13

\ 4

= A software framework 1is an all inclusive, reusable
programming environment that gives specific usefulness as
a major aspect of a bigger programming stage to encourage
advancement of programming applications, items and
arrangements.

= Software frameworks may incorporate bolster programs,
compilers, code libraries, device sets, and application
programming interfaces (APIs) that unite all the diverse
segments to empower advancement of an undertaking or
arrangement.

14

MVC PATTERN

/ MODEL 4\

UPDATES MANIPULATES
\
VIEW CONTROLLER
\‘%\ ‘9/
S &
\Q /

15

\ 4

MVC PATTERN

The model manages fundamental behaviors and data of the
application. It can respond to requests for information,
respond to Instructions to change the state of Its
Information, and even to notify observers in event-driven
systems when information changes. This could be a
database, or any number of data structures or storage
systems. In short, it Is the data and data-management of the
application.

\ 4

Now let's say we have an Online Banking System, from where
the user needs to check his account balance.

View:

= The Ul form which the end user sees and sends the request
from. Typically In this case it could either be the online
web browsers or the mobile Ul, from where the end
user sends the request to check his balance.

\ 4

Controller

= Now what If the user desires to do an online fund transfer
from one account to another. In this case you would be
needing a whole lot of business logic, that
1.accepts the user request,

2.checks his balance in Account 1,
3.deducts the funds,

4., transfers to Account 2,

and updates the balance in both cases.

= What the Controller part here essentially does is accept the
request from user to transfer funds, and redirect it to the
necessary components that would do the job of transfer.

18

\ 4

Model

= Here it responds to requests from users to just read the
data(handled from the view) or do an update of the
data(handled by the controller).

* |n this case the Model, would be the part of the application
that interacts with the database here either to read or write
the data.

= So the user makes a request from the browser to check his
balance amount, the Model would be the part of the
application, that receives It either from view, processes the
request, and sends the data back.

19

Thank Youl!!!

Chapter 6: CBSE
Component Based Software Engineering

Component-based software engineering (CBSE) is an approach to software development that
relies on software reuse. It emerged from the failure of object-oriented development to support
effective reuse. Single object classes are too detailed and specific. Components are more
abstract than object classes and can be considered to be stand-alone service providers.

SC’s are parts of a system or application. Components are a means of breaking the complexity of
software into manageable parts. Each component hides the complexity of its implementation
behind an interface. Components can be swapped in and out like the interchangeable parts of a
machine. This reduces the complexity of software development, maintenance, operations and
support and allows the same code to be reused in many places. The following are illustrative
examples of a component.

Views

User interface components for different requests, views and scenarios. For example, difficult
components can be used to display the same information in a web page and mobile app.

Models

Components that handle requests or events including business rules and data processing. For
example, a model might handle a bill payment request for an internet banking website.
Controllers

A controller is a component that decides what components to call for a particular request or
event. For example, a controller might dynamically load different views for a bill payment based
on factors such as language, transaction status or channel.

APIs

A component that can be reused across multiple systems and applications can be packaged and
distributed as an API. For example, an open source API to connect to a particular database.

CBSE essentials
= Independent components specified by their interfaces.
= Component standards to facilitate component integration.
= Middleware that provides support for component inter-operability.
= A development process that is geared to reuse.

CBSE Design principles
Apart from the benefits of reuse, CBSE is based on sound software engineering design
principles:

= Components are independent so do not interfere with each other;

= Component implementations are hidden;

® Communication is through well-defined interfaces;

= Component platforms are shared and reduce development costs.

CBSE Problems
= Component trustworthiness - how can a component with no available source code be
trusted?
= Component certification - who will certify the quality of components?
® Emergent property prediction - how can the emergent properties of component
compositions be predicted?
®m Requirements trade-offs - how do we do trade-off analysis between the features of one
component and another?
6.1.The CBSE Process:

) Modify
Outline . . .
Identify candidate requirements
system . .
. components according to discovered
requirements components

_] . Compose
Arczlnte-ctural Identify candlfate components to
esign components create system

1 Find 2 Select 4 Adapt 5 Deploy 6 Replace
T T TR TR I
U e - o M
m CLITT0 [ITTTT
Fat — — <> = -

The different steps in the component development

process are:

1. Finding components that may be used in the product. Here all possible components are
listed for further investigation.

2. Select the components that fit the requirements of the product.

3. Create a proprietary component that will be used in the product. We do not have to find
these types of components since we develop them ourselves.

4. Adapt the selected components so that they suit the existing component model or
requirement specification. Some component needs more wrapping than others.

5. Compose or deploy the product. This is done with a framework or infrastructure for
components.

6. Replace old versions of the product with new ones. This is also called maintaining the
product. There might be bugs that have been fixed or new functionality added.

Advantages:

faster development,
lower costs of the development,
better usability,
to reduce the time to market,
To meet rapidly emerging consumer demands. Etc
Disadvantages:
® when you buy a component you do not know exactly its behavior,
you do not have control over its maintenance,
the implementation is quite hard,
Process of improving reuse has been long and laborious etc.
Security is another major concern for the
developers who reuse the components available over the Internet. There may be a virus
inside that component and may pass all the information of the business organization to
attacker.

6.2. Components
Components provide a service without regard to where the component is executing or its
programming language
® A component is an independent executable entity that can be made up of one or more
executable objects;
® The component interface is published and all interactions are through the published
interface;
A software component is a software element that conforms to a component model and can be
independently deployed and composed without modification according to a composition
standard. - Councill and Heinmann:

A software component is a unit of composition with contractually specified interfaces and
explicit context dependencies only. A software component can be deployed independently and is
subject to composition by third-parties.- Szyperski

Component as a service provider
® The component is an independent, executable entity.
® [t does not have to be compiled before it is used with other components.
® The services offered by a component are made available through an interface and all
component interactions take place through that interface.
Component Characteristics:

Standardised Compot standardisation means that a component that is
used ina bBSE proc&m has io conform to some standardised
mnonent his model may define component
mterfac&s component meta-data, documentation, composition

and denlovment.

Independent A component should be independent — it should be possible to
composc and deploy it without having to usc other specific
components. In situations where the component needs

externa]ly provided services, these should be explicitly sct out

in a ‘requires’ interface spec:ﬁc"tmn.

Composable Far a component to be composable, all external interactions
must take place through publicly defined interfaces. In
addition, 1l must provide extemnal access 10 information about
itself such as its methods and attributes.

Deployable To be deployable, a component has to be se H-contained and
must be able to operate as a stand-alone entity on some
component platform that implements the component model.
This usually means that the component 1s a nnary component
that does not have to be compiled before it is deployed.

Documented Components have to be fully documented so that potential
users of the component can decide whether or not they meet
their needs. The syntax and, ideally, the semantics of all
component interfaces have to be specified.

Components and objects
A component model is a definition of standards for component implementation, documentation
and deployment.
Examples of component models are
= EJB model (Enterprise Java Beans)
= COM+ model (.NET model)

® Corba Component Model

The component model specifies how interfaces should be defined and the elements that should

be included in an interface definition

Elements of components model

Customisation

Naming
convention
Composition Documentation
Interface Specific Meta-data Packaging | Evolution
definition interfaces access support
Interfaces) Usage_ Deployment
information and use

Component model

6.3. Component Composition:
® The process of assembling components to create a system.

® Composition involves integrating components with each other and with the component

infrastructure.
® Normally you have to write ‘glue code’ to integrate components.

® Sequential composition: where the composed components are executed in sequence.

This involves composing provides interfaces of each component.

®= Hierarchical composition: where one component calls on the services of another. The

provides interface of one component is composed with the requires interface of another.

®m Additive composition: where the interfaces of two components are put together to create

a new component.

-O>-

5 7

-O>-

-O)-

O

(©

(b)

(a)

Software Engineering

Chapter Seven
Verification and Validation

VvsV

Are we building the system right?

Verification is the process of evaluating
products of a development phase to find
out whether they meet the specified
requirements.

The objective of Verification is to make
sure that the product being develop is as
per design specifications.

Following activities are involved
In Verification: Reviews, Meetings and
Inspections.

Verification process checks whether the
outputs are according to inputs or not.

Verification before the

Validation

comes

Are we building the right system?

Validation is the process of evaluating
software at the end of the development
process to determine whether software
meets the customer expectations and
requirements.

The objective of Validation is to make
sure that the product actually meet up
the user’s requirements.

Following activities are involved
in Validation: Testing like black box
testing, white box testing etc.

Validation process checks whether the
software is accepted by the user or not.

Validation comes after the Verification.

2

\ 4

V and V process

" |[s a whole life-cycle process - V & V must be applied at
each stage in the software process.

It has two principal objectives
" The discovery of defects in a system;

" The assessment of whether or not the system is useful
and useable in an operational situation.

\ 4

V and V Goal

= \erification and validation should establish confidence
that the software is fit for purpose.

= This does NOT mean completely free of defects. Rather,
It must be good enough for its intended use and the type

of use will determine the degree of confidence that is
needed.

\ 4

Software Inspections

Software Inspections refers to peer review of any work
product by trained individuals who look for defects using
a well defined process- Wikipedia

What are software inspections (reviews)?

Meetings during which designs and code are reviewed by
people other than the original developer.

\ 4

Software Inspections

It is usually manual and a static technique that Is
applied in the early development cycle.

Software inspection Is regarded as the most formal type
of review.

It is led by the trained moderators and involves peers
to examine the product.

The defects found during this process are documented
In a issue log (checklist).

g

Software Inspections

Note:

Static Testing:

code is not executed. Rather it manually checks the code, requirement documents,
and design documents to find errors. Hence, the name "static".

The main objective of this testing is to improve the quality of software products by
finding errors in the early stages of the development cycle. This testing is also
called a Non-execution technique or verification testing.

Static testing involves manual or automated reviews of the documents. This review
Is done during an initial phase of testing to catch Defect early in STLC. It
examines work documents and provides review comments

Dynamic Testing:
A code is executed. It checks for functional behavior of software system, memory/
cpu usage and overall performance of the system. Hence the name "Dynamic"

The main objective of this testing Is to confirm that the software product works in
conformance with the business requirements. This testing is also called an
Execution technique or validation testing.

Dynamic testing executes the software and validates the output with the expected
outcome. Dynamic testing is performed at all levels of testing and it can be
either black or white box testing.

\ 4

Inspections preconditions 1

= A group of participants Is nominated.[]

= Participants must be familiar with Inspections
procedures.

= Each participant has a well defined role,

l.e. participant may be a moderator, an author, an inspector,
a reader or a recorder.

= A precise specification must be available.

= Team members must be familiar with the organization
standards.

\ 4

Inspections preconditions 2

Syntactically correct code or other system
representations must be available.

An error checklist should be prepared.

Management must accept inspection that will increase
costs early in the software process.

Management should not use inspections for staff
appraisal 1.e. finding out who makes mistakes.

Inspections process

g
()

Inspection
meefing

l |
Individual
prepar ation

=)

10

\ 4

Inspections process
System overview presented to inspection team.

Code and associated documents are distributed to
Inspection team In advance.

Inspection takes place and discovered errors are noted.
Modifications are made to repair discovered errors.

Re-Inspection may or may not be required.

Author or owner

Ins pector

Reader

Scribe

Chairman or mo derator

Chief mo derator

\ 4

Inspections Roles

The programmer or designer responsible for
producing the program or document. Responsible
for fixing defects discovered during the inspection
process.

Finds errors, omissions and inconsistencies in
programs and documents. May also identify

broader issues that are outside the scope of the
inspection team.

Presents the code or document at an inspection
meeting.

Records the results of the inspection meeting.

Manages the process and facilitates the inspection.
Reports process results to the Chief mo derator.

Responsible for inspection process improvements,
checklist updating, standards development etc.

12

\ 4

Inspection checklist

Checklist of common errors should be used to drive the
Inspection.

Error checklists are programming language dependent
and reflect the characteristic errors that are likely to arise
In the language.

In general, the 'weaker' the type checking, the larger the
checklist.

Check-list examples:
v’ Initialisation,
v’ ConstantNaming,
v"loopTermination
v" ArrayBounds, etc.

13

Data faults

Control faults

Input/output faults

Inspection checks 1

Are all program variables initialised before their values are
used?

Have all constants been named?

Should the upper bound of arrays be equal to the size of the
array or Size -1?

If character strings are used, is ade limiter explicitly
assi gned?

Is thereany possi bility of b uffer overflow?

For eachco nditional state ment, isthe condition correct?

Is eac h loop certainto terminate?

Are comp ound statements c orrectly bracketed?

In case state ments, areall possi ble cases acc ounted for?

If a break is required after each case in case state ments, has
itbeen included?

Are all input variablesu sed?

Are all output variables assigned a value before they are
output?

Can unexpected inputs causecorruption?

Interface faults

Storage
manageme nt faults

Exception
manageme nt faults

Inspection checks 2

Do all function and method calls have the correct number
of parameters?

Do formal and actual parameter ty pes match?

Are the parameters 1n the right order?

If components access shared memory, do they have the
same model of the shared memory structure?

If a linked structure is modified, have all links been
correctly reassigned?

[f dynamic storage i1s used, has space been allocated
correctly?

Is space explicitly de-allocated after it 18 no longer
required?

Have all possible error conditions been taken into account?

15

\ 4

Inspection Rate
500 statements/hour during overview.

125 source statement/hour during individual preparation.
90-125 statements/hour can be inspected in ‘I’ meeting.
Inspection Is therefore an expensive process.

Inspecting 500 lines of code with 40 man/hours effort -
cost around $3200.

\ 4

Formal Methods

= Formal methods are a particular kind of mathematically-
based techniques for the specification, development and
verification of s/w and h/w systems.

= Major goal of software engineers:
= To develop reliable system but how?

Formal Methods:

v Mathematical languages, techniques and tools.
v" Used to specify and verify systems.
v Goal:

Help engineers construct more reliable systems.

17

¥

Formal Methods

= Formal methods can be applied at various points through
the development process

v'Specification
v'Verification
Specification:
= give a description of the system to be developed and its
properties.
Verification:

prove or disprove the correctness of a system with respect
to the formal specification or property:.

= The use of formal methods can contribute to the
reliability and robustness of a design.

18

\ 4

Formal Methods

= However the high cost of using formal methods means
that they are usually only used in the development of
high-integrity systems, where safety or security Is very
Important.

Example of high-integrity systems:

Transport, communications, health and energy are all
representative example of critical system where errors is
not permitted.

19

\ 4

Arguments for Formal Methods

= Producing a mathematical specification requires a
detailed analysis of the requirements and this is likely to

uncover errors.

= They can detect implementation errors before testing
when the program Is analyzed alongside the
specification.

20

\ 4

Arguments against Formal Methods

= Require specialized notations that cannot be understood
by domain experts.

= \ery expensive to develop a specification and even more
expensive to show that a program meets that
specification.

= It may be possible to reach the same level of confidence
In a program more cheaply using other V & V
techniques.

21

\ 4

Cleanroom Software Engineering

= The name Is derived from the 'Cleanroom‘ process In
semiconductor fabrication. The philosophy is—=> “defect
prevention rather than defect removal”.

= Way of s/w development in which defect are avoided by
using formal methods of development and rigorous
(strict) inspection process.

= Objective of this approach is ““zero defect s/w”.

22

Cleanroom Software Engineering

Eror rework

Formally
specify

system

Define

softw are

Construct
structur ed
program

Integ rate
merement

merements

Deelop
oper ational

Test
statistical B= integrated
system

profile

fests

23

\ 4

Cleanroom Software Engineering
Process is based on five strategic activities:
Formal specification:

* The software to be developed is formally specified. A state-
transition model which shows system responses to stimuli Is
used to express the specification.

Incremental development:

= The software Is partitioned Into increments which are
developed and validated separately using the Cleanroom
process. These increments are specified, with customer input,
at an early stage in the process.

24

\ 4

Structured programming:

= Only a limited number of control and data abstraction
constructs are used. The program development process Is a
process of stepwise refinement of the specification.

Static verification:

* The developed software is statically verified using rigorous
software inspections. There Is no unit or module testing
process for code components.

Statistical testing of the system:

* The integrated software increment is tested statistically, to
determine its reliability. These statistical tests are based on
an operational profile which is developed in parallel with the
system specification.

Thank Youl!!!

Software Engineering
Chapter 8
Software Testing and cost estimation

by
Santosh Girli
Lecturer, IOE, Pulchowk Campus.

Types of Testing (Exam)

1. Unit Testing

While coding, the programmer performs some tests on
that unit of program to know If it is error free.

Testing Is performed under white-box testing approach.

Unit testing helps developers to decide that individual
units of the program are working as per requirement and
are error free.

. Integration Testing

Even iIf the units of software are working fine
Individually, there is a need to find out If the units is
Integrated together will also work without errors.

3. System Testing

= software Is compiled as product and then it is tested as a
whole.

= software IS tested such that it works fine for different
operating system.

= Performed by developers and testers.
4. Acceptance Testing:

= Tested for user-interaction and response. This IS
Important because even if the software matches all user
requirements and but user does not like the way it
appears or works, it may be rejected.

* |s performed by Independent set of testers as well as
stakeholders, clients.

4. Acceptance Testing types:
4.1. Alpha Testing

= team of developer themselves perform testing by using
the system, as If it Is being used in work environment.

= This I1s performed to assess the Product iIn the
development/testing environment by a specialized
testers team usually called alpha testers. Here, the testers
feedback, suggestions help to improve the Product usage
and also to fix certain bugs.

4. Acceptance Testing:
4.2. Beta Testing

After the software Is tested internally, it is handed over
to the users to use It under their production environment

only for testing purpose. product Is not as yet the
delivered product

Continuous feedback from the users is collected and the
Issues are fixed

Black box vs. white box testing (Exam)

Black box testing White box testing

Testing techniques without any
knowledge of internal working of
application.

Knowledge of programming is not
necessary.

Less time consuming.

Usually testing performed by end-

users and also by testers &
developers.

Focus on what is performed.

Tester I1s unaware of internal

architecture.

Testing techniques in which tester
must have knowledge of internal
working of application.

Knowledge of programming &
Internal logic of code Is necessary.

More time consuming

Normally testing is performed by
testers & developers.

Focus on how it is performed.

Tester IS of Internal

architecture.

aware

Integration testing

= Involves building a system from its components and
testing for problems that arise from component
Interactions.

= Top-down integration testing

v'In this approach testing is conducted from main
module to sub module, If the sub module iIs not
developed, a temporary program called STUB is used
to simulate the sub module.

= Bottom-up integration testing

v'In this approach testing is conducted from sub module
to main module, If the main module is not developed,
a temporary program called DRIVERS is used to
simulate the main module.

Incremental integration testing

A,B,C,D-Components

T1to TS - test sets —@
o =2 Fto

- =
@[3 Fro
Sl R0 Hle
RS0

Tedssgacel Tedssqae?2 Etsqee3

Incremental integration testing

In the above fig. A,B,C,D are the components & T1
to T5 are the related sets of tests .

T1,T2,T3 are first run on the system composed of
component A & component B(the minimal system),
If these reveal defects, they are corrected.

Component C is integrated & T1,T2,T3 Is repeated to
ensure that there have not been unexpected
Interactions with A & B.

Test set T4 Is also run to the system & so on for D
with addition of T5.

Release testing

= The process of testing a release of a system that will
be distributed to customers.

= Primary goal is to increase the supplier’s confidence
that the system meets its requirements.

» Release testing Is usually black-box or functional
testing

v'Based on the system specification only;

v'Testers do not have knowledge of the system
Implementation.

Black-box testing

| nputs causing
anomalous
Input test da ta behaviour

System

Outputsw hich reweal
the pr esence of
defects

¥\

Oe

Output test r esults

11

Black-box testing

Fig illustrates the model of the system that Is assumed In
black box testing.

Tester presents Inputs to the component or the system &
examines the corresponding outputs.

If the outputs are not those predicted(i.e. if outputs are in
set O,), then the test has detected a problem with the
software.

When testing system releases, one should try to break the
software, choosing test case that are In the set I.. I.e. aim
should be to select inputs that have a high probability of
generating system failures.

Testing guidelines

Testing guidelines are hints for the testing team to help
them choose tests that will reveal defects In the
system.

= Choose Inputs that force the system to generate all
error messages.

= Design inputs that cause buffers to overflow.
» Repeat the same input or input series several times.
= Force invalid outputs to be generated.

» Force computation results to be too large or too
small.

Case study for testingscenariol

A student in Scotland is studying American History and has been asked o write a paper on “Frontier
mentality In the American West from 1840 to 180", To do this, she negds to find sources from a range of
libraries. She logs on to the LIBSYS system and uses the search facility to discover If she can access
original documents from that time. She discovers sources in various US university libraries and downloads
copies of some of these. However, for ong document, she needs to have confirmation from her university
that she IS a genuing student and that use IS for non-commercial purposes. The student then uses the facility
I LIBSYS that can request such permission and registers her request. I granted, the document will be
downloaded to the registered library’s server and printed for her. She receives a message from LIBSYS
telling her that she will receive an e-mail message when the printed document is avatlable for collgction.

System tests for scenariol

Test the login meclanism using correct and inomect logins to check
thatvalid users ae acepedand invaid users ae reje ded.

T est the search facility using different queries against known sources to

check thatthe sarch mechanismis actually finding daiments.

Test the sydem presentation faclity to check tha information about
doaumentsis dsplayed properly.

Testthe mechanism & requestperm ision or downloaling.

Test the e-mail response indicatng that the downloaded docum ent is
avallable.

8.2 Component testing

= Component testing Is a method where testing of each
component in an application is done separately.

= There are different types of components may be
tested at this stage:

= |ndividual functions or methods within an object;
= Object classes with several attributes and methods;

= Composite components with defined interfaces
used to access their functionality.

ODbject class testing

Complete test coverage of a object class involves:
= Testing all operations associated with an object;
= Setting and interrogating all object attributes;

= EXxercising the object in all possible states.

8.3 Test case design

= |nvolves designing the test cases (inputs and outputs)
used to test the system.

= The goal of test case design Is to create a set of tests
that are effective in validation and defect testing.

= Example in Case Study example

Thank

Software Engineering
Chapter 8
Software Testing and cost estimation

by
Santosh Girli
Lecturer, IOE, Pulchowk Campus.

\ 4

Project Planning:

Project planning is an organized and integrated management process,
which focuses on activities required for successful completion of the
project.

It helps In better utilization of resources and
optimal usage of the allotted time for a project.

Objectives of project planning

Define roles and responsibilities of the project management team
members.

Ensure that project management team works according to business
objectives

Check feasibility of schedule and user requirements.

\ 4

Project Scheduling

» Project scheduling Is concerned with determining the time
limit required to complete the project.

= An appropriate project schedule aims to complete the
project on time, and also helps in avoiding additional cost
that is incurred when software is not developed on time.

Various factors that delay project schedule

Unrealistic deadline

v" Project schedule is affected when the time allocated for completing a
project is impractical and not according to the effort required for it.

Under-estimation of resources

v Under-estimation of resources leads to delay in performing tasks of
the project.

\ 4

Changing user requirements:

v Sometimes, project schedule is affected when user requirements are
changed after the project has started. This affects the project schedule,
and thus more time is consumed both in revision of project plan and
Implementation of new user requirements.

Difficulties of team members

v" Software project can also be delayed due to unforeseen difficulties of
the team members. For example, some of the team members may
require leave for personal reasons.

Lack of action by project management team

v Project management team does not recognize that the project is
getting delayed. Thus they do not take necessary action to speed up
the software development process and complete it on time.

\ 4

BASICS OF COST ESTIMATION

= Cost estimation Is the process of approximating the costs
Involved in the software project.

= Cost estimation should be done before software
development is Initiated since it helps the project manager
to know about resources required and the feasibility of the
project.

= There are many parameters or factors, such as complexity,
time availability, and reliability, which are considered
during cost estimation process. However, software size Is
considered as important parameters for cost estimation.

\ 4

Software Sizing:

Before estimating cost, It Is necessary to estimate the
accurate size of software.

This Is a difficult task as many software are of large size.
Therefore, software is divided into smaller components to
estimate size.

This Is because It Is easier to calculate size of smaller
components, as the complexity involved in them is less than
the larger components.

There are mainly two approaches followed for estimating size:
v'Direct approach - size can be measured in terms of lines of code (LOC)

v"Indirect approach = size can be measured in terms of functional point
(FP).

\ 4

1. Lines Of Code(LOC)

= LOC can be defined as the number of delivered lines of
code In software excluding the comments and blank lines.

If comments and blank lines are excluded from the software sizing,
then Why to include them?

Blank lines = Included to improve readability of code.

Comments - Included to help in code understanding as well as during
maintenance.

But, these blank lines and comments do not contribute to any kind of the
functionality so not considered in LOC for size estimation.

\ 4

Advantages
= \ery easy to count and calculate from the developer code.
Disadvantages
= LOC is language depended.

v' Same computation in python may have smaller code than C++.
= Varies from one organization of code to another

organization of code. Example:
for(int i1=0;i<5;i++)
printf(*“%d”,1);

—>Here, lines of code =2 for(int i=0;i<5;i++)
{
printf(*%d” i);
}

Here, lines of code =4
Same operation but differ in size of the code.

\ 4

2. Function Point(FP)
= Function point metric is used to measure effort in a project.

= Some features FP considered to compute the size are:
v Number of external inputs (EI)

—>Users and other applications act as a source of external inputs
and provide distinct application oriented data or information.

v Number of external outputs (EO)
->Each external output provided by the application

- External outputs refer to reports, screens, error message, and so
on.

\ 4

v Number of external inquires (EQ):
Used to sends data or control information outside the application.

v Number of internal logical files (ILF):

Logical grouping of data that resides within the application boundary,
such as database, Storage file, Intermediate buffer.

These files are maintained through external inputs.

v" Number of external interface files (EIF):

Logical grouping of data that resides external to the application, such
as data files on tape or disk.

\ 4

Steps In function point analysis:
= Count the number of functions of each proposed type.

= Compute the Unadjusted Function Points(UFP) as
UFP=Y {F*weight}

= Compute Complexity/Value Adjustment Factor(CAF) as
CAF=0.01*) (Fi) +0.65
= Find the Function Point Count(FPC) as
FP=U.F.P* CAF

\ 4

Stepl:Compute the Unadjusted Function Points(UFP):

= Categorize each of the five function types as low, average or high
based on their complexity. Multiply count of each function type with
Its weighting factor and find the weighted sum.

i.e. UFP=) {F*weight}
= The weighting factors for each type based on their complexity are as
follows:

Function Type Weight or Factor
Low Average High

External Inputs 3 4 6
External Output 4 5 7
External Inquiries 3 4 6
Internal Logical Files 7 10 15
External Interface Files 5 7 10

12

\ 4

Step 2 : Calculate Final FP as

FP = U.FP (unadjusted functional point) * CAF(complexity
adjustment factor).

where CAF= 0.01*) (Fi) + 0.65

I=1 to 14 i.e. total number of questions where each
question have answer with scale value 0 to 5.

> F1 = sum of all scale value [0-5] from 1 to 14.

\ 4

The value adjustment factors are based on the response to these 14
guestions, which are listed below:
1. Is reliable backup and recovery required by the system?
2. Is data communication required to transfer the information?
3. Do distributed processing functions exist?
4. |Is performance vital?
5. Does the system run under immensely utilised operational environment?
6. Is on-line data entry required by system?
7. Is it possible for the on-line data entry (that requires the input transaction)
to be built
over multiple screens or operations?
8. Is updation of internal logical files allowed on-line?
9. Are the inputs, outputs, files, or inquires complex?
10. Is the internal processing complex?
11. Is the code reusable?
12. Does design include conversion and installation?
13. Does system design allow multiple installations in different
organizations?
14. Is the application easy to use and does it facilitate changes?

\ 4

Example:

Given the following parameters, compute FP. Complexity

adjustment factors and weighting factors are average.
user i/p =50
user o/p=40
user enquiries =35
user files =6
external interface =4

Unadjusted FP=50*4+40*5+35*4+6*10+4*7=628
Complexity AF=0.01*(14*Average —3)+0.65=1.07
Function of Point=UFP*CAF=628*1.07=671.96

\ 4

Advantages

= Independent of Language and technical tool

= Directly estimated from requirements before design
and coding.

Disadvantages
= More complex calculation than LOC.

\ 4

Cost Estimation Models

Algorithmic models:

Estimation In these models is performed with the help of
mathematical equations, which are based on historical data
or theory.

In order to estimate cost accurately, various inputs are
provided to these algorithmic models.

These inputs include software size and other parameters.

The various algorithmic models used are COCOMO,
COCOMO 1, and software equation.

\ 4

Non-algorithmic models:

= Estimation In these models depends on the prior
experience and domain knowledge of project managers.

= Note that these models do not use mathematical equations
to estimate cost of software project.

= The various non-algorithmic cost estimation models are
expert judgment, estimation by analogy, and price to win
etc.

1

\ 4

Constructive Cost Model(COCOMO)

COCOMO is one of the most widely used software
estimation models in the world.

In this model, size 1S measured In terms of thousand of
delivered lines of code (KDLOC).

In order to estimate effort accurately, COCOMO model divides
projects into three categories :

. Organic projects:
v" These projects are small in size (not more than 50 KDLOC.

v Example of organic project are, business system, inventory
management system, payroll management system, and library
management system.

\ 4

2. Semi-detached projects:
v" The size of semi-detached project is not more than 300 KDLOC.

v' Examples of semi-detached projects include operating system,
compiler design, and database design.

3. Embedded projects:
v" These projects are complex in nature (size is more than 300 KDLOC).

v' Example of embedded projects are software system used in avionics
and military hardware.

A

Constructive cost model Is based on the hierarchy of three
models, basic model, intermediate model, and advance
model.

1. Basic Model:

= |n basic model, only the size of project is considered while calculating
effort.

= To calculate effort, use the following equation (known as effort
equation):
E=AXx(size)B (1)
where E is the effort in person-months and
size I1s measured in terms of KDLOC.

\ 4

The values of constants ‘A’ and ‘B’ depend on the type of the software
project. In this model, values of constants (‘A’ and ‘B’) for three
different types of projects are listed in Table.

Project Type A B

Organic project 3.2 1.05
Semi-detached project 3.0 1.12
Embedded project 2.8 1.20

Example:

If the project Is an organic project having a size of 30 KDLOC, then
effort Is calculated using equation,

E =3.2x (30)1.05
E = 114 Person-Month

\ 4

2. Intermediate Model:

= In iIntermediate model, parameters like software reliability and
software complexity are also considered along with the size, while
estimating effort.

= To estimate total effort in this model, a number of steps are followed,
which are listed below:

v' Calculate an initial estimate of development effort by considering the size in
terms of KDLOC.

v" ldentify a set of 15 parameters, which are derived from attributes of the current
project. All these parameters are rated against a numeric value, called
multiplying factor.

v' Effort adjustment factor (EAF) is derived by multiplying all the multiplying
factors with each other.

\ 4

The COCOMO |1 Effort Equation:

Effort(Person-Month) = 2.94(Initial calibration) * EAF * (KDLOC)E

Where,

EAF: Effort Adjustment Factor derived from the 15 Cost Drivers or
multiplying factors (make assumption if value are not given in exam)

E: Exponent derived from the five Scale Drivers (make Assumption if
value not given)

Example:

A project with all Nominal Cost Drivers and Scale Drivers would have an “EAF” of
1.00 and exponent “E” of 1.0997. Assuming that the project is projected to consist of
8,000 source lines of code.

Then by Using COCOMO I estimation
Effort = 2.94 * (1.0) * (8)1.0%°%7 = 28.9 Person-Months

¥

In the same example if effort multipliers are given then

If your project Is rated Very High for Complexity (effort multiplier of
1.34), and Low for Language & Tools Experience (effort multiplier
of 1.09), and all of the other cost drivers are rated to be Nominal
(effort multiplier of 1.00) then,

Effort Adjustment Factor (EAF) = 134 * 109* 1 = 1.46
Effort = 2.94 * (1.46) * (8)19%97 = 42.3 Person-Months

\ 4

COCOMO Il Schedule Equation:

The COCOMO Il schedule equation predicts the number of months
required to complete your software project. It is predicted as:

Duration=3.67(Initial calibration) *(Effort)>E

Where,
Effort: Effort from the COCOMO |1 effort equation.
SE: Schedule equation exponent derived from the five Scale Drivers
Example:

Continuing previous example and assuming the schedule equation
exponent of 0.3179 that is calculated from the five scale drivers.

Duration=3.67*(42.3)°317°=12.1months

Average staffing = Effort/Duration
= (42.3 Person-Months) / (12.1 Months) = 3.5 people

\ 4

Advantages

Disadvantages

* Easy to verify the working involved mn it.

* Cost drivers are useful in effort estimation as they
help in understanding impact of different
parameters involved In cost estimation.

» Efficient and good for sensitivity analysis.

* Can be easily adjusted according to the
organization needs and environment,

» Difficult to accurately estimate size, in the
early phases of the project.

* Vulnerable to misclassification of the project

type.

* Success depends on calibration of the model
according to the needs of the organization.
This 1s done using historic data, which is not
always available.

» Excludes overhead cost, travel cost and other

incidental cost,

27

Thank

Software Engineering
Chapter 9
Software Quality Management

by
Santosh Girli
Lecturer, IOE, Pulchowk Campus.

Software Quality?

It Is the degree of conformance to explicit or implicit
requirements and expectations.

Explicit: clearly defined and documented.

Implicit: not clearly defined and documented but
Indirectly suggested.

Requirements: business/product/software requirements.
Expectations: mainly end-user expectations.

Short and simple:
v' The lack of bugs
v' Low defect rate
v High reliability (no. of failures per hours)

McCall’s Quality Factors = already discussed

Maintainability Portability
Flexibility Reusability
Testability Interoperability

Product Product
revision transition

Product operations

Correctness
Reliability
Efficiency
Integrity
Usability

Software Quality Assurance?

~ =Software Quality Assurance Is a planned and systematic way
of creating an environment to assure that the software product
being developed meets the quality requirements.

=Refers to the implementation of well-defined standards and
methods (such as 1SO-9000 or C<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>