
Tribhuvan University
Institute of Engineering

Pulchowk Campus
Department of Electronics and Computer Engineering

by
Santosh Giri

Lecturer, IOE, Pulchowk Campus.

Software Engineering
[Subject Code: CT 601]

1



Overall Course Outline:
SOFTWARE ENGINEERING

CT 601
Lecture : 3                                                       Year : III
Tutorial : 1                                                       Part : I
Practical : 1.5
Course Objectives:
This course provides a systematic approach towards
planning, development, implementation and maintenance
of system, also help developing software projects.

2



1. Software Process and requirements (12 hours)
1.1. Software crisis
1.2. Software characteristics
1.3. Software quality attributes
1.4. Software process model
1.5. Process iteration
1.6. process activities
1.7. Computer‐aided software engineering
1.8. Functional and non –functional requirements
1.9. User requirements
1.10. System requirement
1.11. Interface specification

3



1.12. The software requirements documents
1.13. Feasibility study
1.14. Requirements elicitation and analysis
1.15. Requirements validation and management
2. System models (3 hours)
2.1. Context models
2.2. Behavioural models
2.3. Data and object models
3. Architectural design (6 hours)
3.1. Architectural design decisions
3.2. System organization
3.3. Modular decomposition styles

4



3.4. Control styles
3.5. Reference architectures
3.6. Multiprocessor architecture
3.7. Client –server architectures
3.8. Distributed object architectures
3.9. Inter‐organizational distributed computing
4. Real –time software design (3 hours)
4.1. System design
4.2. Real‐time operating systems
4.3. Monitoring and control systems
4.4. Data acquisition systems

5



5. Software Reuse (3 hours)
5.1. The reuse landscape
5.2. Design patterns
5.3. Generator –based reuse
5.4. Application frameworks
5.5. Application system reuse

6. Component‐based software engineering (2 hours)
6.1. Components and components models
6.2. The CBSE process
6.3. Component composition

6



7. Verification and validation (3 hours)
7.1. Planning verification and validation
7.2. Software inspections
7.3. Verification and formal methods
7.4. Critical System verification and validation
8. Software Testing and cost Estimation (4 hours)
8.1. System testing
8.2. Component testing
8.3. Test case design
8.4. Test automation
8.5. Metrics for testing
8.6. Software productivity

7



8.7. Estimation techniques
8.8. Algorithmic cost modeling
8.9. Project duration and staffingf
9. Quality management (5 hours)
9.1. Quality concepts
9.2. Software quality assurance
9.3. Software reviews
9.4. Formal technical reviews
9.5. Formal approaches to SQA
9.6. Statistical software quality assurance
9.7. Software reliability
9.8. A framework for software metrics

8



9.9. Matrices for analysis and design model
9.10. ISO standards
9.11. CMMI
9.12. SQA plan
9.13. Software certification
10. Configuration Management (2 hours)
10.1. Configuration management planning
10.2. Change management
10.3. Version and release management
10.4. System building
10.5. CASE tools for configuration management

9



Practical
The laboratory exercises shall include projects on requirements,
analysis and designing of software system. Choice of project
depend upon teacher and student, case studies shall be included
too. Guest lecture from software industry in the practical session.

References:
1. Ian Sommerville, Software Engineering , Latest edition
2. Roger S. Pressman, Software Engineering –A Practitioner’s 

Approach, Latest edition
3. Pankaj Jalote, Software Engineering‐A precise approach, Latest 

edition
4. Rajib Mall, Fundamental of Software Engineering, Latest 

edition

10



Evaluation Scheme:
The questions will cover all the chapters in syllabus. The 
evaluation scheme will be as indicated in the table below:

*There may be minor deviation in marks distribution

11



Tribhuvan University
Institute of Engineering

Pulchowk Campus
Department of Electronics and Computer Engineering

by
Santosh Giri

Lecturer, IOE, Pulchowk Campus.

Software Engineering
Chapter One

Software Process and requirements 

12



Chapter One: Software Process and requirements
Course Outline:                                                      12 hours, 20 Marks
1.1. Software crisis
1.2. Software characteristics
1.3. Software quality attributes
1.4. Software process model
1.5. Process iteration
1.6. process activities
1.7. Computer‐aided software engineering
1.8. Functional and non –functional requirements
1.9. User requirements
1.10. System requirement
1.11. Interface specification
1.12. The software requirements documents
1.13. Feasibility study
1.14. Requirements elicitation and analysis
1.15. Requirements validation and management

13



What is Software? Computer software is the
product that software professionals build and
then support over the long term.

14



. 
1. Application Software:-
 Application software is that software which is

designed and developed to perform some
particular application.
 It can be divided into following two types:-
a. Generic (or Packaged) Software:-
 The application software which is designed to

fulfill the needs of large group of users is
known as generic or packaged software.

 Example: MS-Word, Adobe Reader, MS-
Excel.

15



. 
b. Tailored (or Specific) Software:-
 The application software which is designed to

fulfill the needs of a particular
user/company/organization is known as
tailored or specific software.

Ex: Software used in department stores,
hospitals, schools etc.

2. System Software:-
 The software which can directly control the

hardware of the computer are known as system
software.Ex: Video driver, audio driver.

16



. 
3. Utility Software:-
Small software that usually performs some

useful tasks is known as utility software.
Ex: Win Zip, JPEG Compressor, PDF Merger,

PDF to Word Converter etc.

17



. 
1.2.Software Characteristics
 Software is developed or engineered, not

manufactured in the classical sense

 Software doesn’t “wear out”

 Software is custom-built, rather than being
assembled from existing components

18



. 
Continued…

1. Software is developed or engineered, not
manufactured in the classical sense

 Although some similarities exists between software
development and hardware manufacturing, the two
activities are fundamentally different.
 Similarities

 High quality needs to be achieved
 Both depend on people &
 Requires construction of product

19



. 
Continued…

 Software is a design of strategies, instruction
which finally perform the designed, instructed
tasks. And a design can only be developed, not
manufactured.

 Software is virtual. That is, software can be
used using proper hardware. we can only use
it, but we cannot touch and see hardware. Thus
software never gets manufactured, they are
developed.

20



2. Software doesn’t “wear out”

(H/W failure)

Figure 1 : Bathtub Curve

21

failures due to design
/manufacturing defects

cumulative affects
of dust, vibration,
abuse, temperature
extremes etc.



. 
Figure 1 depicts failure rate vs time for hardware 

called bath tub curve
 The relationship, often called the “bathtub

curve“
 It indicates that hardware exhibits relatively

high failure rates early in its life (failures
due to design /manufacturing defects);
 defects are corrected and the failure rate

drops to a steady-state level (ideally, quite
low) for some period of time.

22



. 
Continued…

 As time passes, the failure rate rises again as
hardware components suffer from the
cumulative affects of dust, vibration, abuse,
temperature extremes, and many other
environmental maladies.

 Stated simply, the hardware begins to wear
out.

23



S/W Failure

24

outdated and
no longer
used.

high failure rates in the
beginning due to
Undiscovered defects.

Undergo changes



. 
Continued…

 Software is not susceptible to environmental maladies
 In theory, s/w should take the form of “idealized

curve”
 However, Undiscovered defects in the beginning will

cause high failure rates
 These are corrected (ideally, without introducing

other errors) and the curve flattens as shown
 During the life time it undergo changes

25



. 
Continued…

 it is likely that some new defects will be
introduced, causing the failure rate curve to
spike as shown
 Before the curve can return to the original

steady-state failure rate, another change is
requested, causing the curve to spike again
 Slowly, the minimum failure rate level begins

to rise- due to change.

26



. 
Continued…

 Another aspect of wear illustrates the difference
between hardware and software.

 When a hardware component wears out, it is replaced
by a spare part.

 There are no software spare parts.
 Every software failure indicates an error in design or

in the process through which design was translated
into machine executable code.

 Therefore, software maintenance involves
considerably more complexity than hardware
maintenance.

27



. 
3. Software is custom-built, rather than being 

assembled from existing components

 Consider the manner in which the control
hardware for a computer-based product is
designed and built.
 The design engineer draws a simple schematic

of the digital circuitry, does some fundamental
analysis to assure that proper function will be
achieved, and

28



. 
Continued…

 then goes to the shelf where catalogs of digital
components exist.
 Each integrated circuit (called an IC or a chip)

has a part number, a defined and validated
function, a well-defined interface, and a
standard set of integration guidelines.
 After each component is selected, it can be

ordered off the shelf.

29



. 
Continued…

 Standard screws and off-the-shelf integrated
circuits are only two of thousands of standard
components that are used by mechanical and
electrical engineers as they design new
systems.
 In the hardware world, component assemble

and reuse is a natural part of the engineering
process.
 In the software world, it is something that has

only begun to be achieved on a broad scale.
30



. 
1.3. Software quality attributes
 Functionality
All the features & their functionality should

works as expected.
There should not be any deviation in the actual

result and expected result.
 Reliability
An s/w is said to be reliable if it delivers all 

features without any failure & that it is error 
free.

31



. 
e.g.: an application of saving student records 

without any error and should not fail after 
entering 100 records.

• Correctness: A software product is correct, if
different requirements as specified in the
software requirements specification(SRS)
document have been correctly implemented.

• Usability
An s/w product is said to be usable of it is easy 

to use without any specific training.
An s/w must be user friendly (i.e. easy to use).

32



. 
 Reusability
An s/w product has good reusability if

different modules of the product can be reused
to develop new product.
 Efficiency
A product should not waste resource.
 Portability
An s/w product is said to be portable if it can

be easily made to work in different operating
system.

33



. 
 Maintainability
An s/w product is said to be maintainable if
Errors can be corrected easily.
New functions can be added easily.
Functionality can be modified easily
 Durable
An s/w product is said to be durable if it can be

in use for long period of time.

34



. 
Software Crisis (assignment 1)
The difficulty of writing the code for a computer

program which is correct and understandable is
referred to as software crisis.

or
Software crisis is also referred to as inability to

hire enough qualified programmers.

35



. 

36



. 
 Software market today has a turnover of more than

millions of rupees.
 Out of this, approximately 30% of software is used

for personal computers and the remaining software is
developed for specific users or organizations.

 Application areas, such as the banking sector are
completely dependent on software application for
their working. Software failures in these technology-
oriented areas have led to considerable loss in terms
of time, money, and even human lives.

37



. 
History has seen many such failures. Some of

these are listed below:
1)1991 during Gulf War: The USA use patriot

missiles as a defense against Iraqi scud
missile. However, patriot failed to hit the scud
many times which cost life of 28 USA soldiers.
In an inquiry it is found that a small bug
had resulted in miscalculation of missile
path.

38



. 
2) Arian- 5 Space Rocket: In 1996, developed

at cost of $7000 Million Dollars over a period
of 10 years was destroyed within less than 1
minutes after its launch. As there was software
bugs in rocket guidance system.

3) "Dollar 924 lakhs": In 1996, US bank credit
accounts of nearly 800 customer with dollar
924 lakhs. This problem was due to main
programming bug in the banking system.

39



. 
4) The North East blackout in 2003- has been

major power system failures in the history of
north which involves 100 power plants, 50
million customer faced problem, $ 6 million
dollar financial loss.

5) In June 1980, the North American Aerospace
Defense Command (NORAD) reported that
the US was under missile attack. The report
was traced to a faulty computer circuit that
generated incorrect signals.

40



. 
Continue…

If the developers of the software responsible for
processing these signals had taken into account
the possibility that the circuit could fail, the
false alert might not have occurred

41



. 
1.3. Software Process Model
 Since the prime objective of software engineering is to

develop methods for large systems, which produce
high quality software at low cost and in reasonable
time.

 So it is essential to perform software development in
phases. This phased development of software is often
referred to as software development life cycle (SDLC)
or software life cycle.

 And the models used to achieve these goals are termed
as Software Process Models.

42



. 

43

Fig 1 software development process



. 

In fig 1,
 These phases work in top to bottom approach

 The phases take inputs from the previous
phases, add features, and then produce outputs

44



. 
1. Preliminary investigation/ feasibility study:
 Feasibility study decides whether the new

system should be developed or not.
 There are three constraints, which decides the

go or no-go decision.
a. Technical:
 determines whether technology needed for proposed

system is available or not.
 determines whether the existing system can be

upgraded to use new technology
 whether the organization has the expertise to use it or

not. 45



. 
b. Time:
 determines the time needed to complete a project.
 Time is an important issue as cost increases with an

increase in the time period of a project.
c. Budget:
 This evaluation looks at the financial aspect of the

project.
 determines whether the investment needed to

implement the system will be recovered at later
stages or not.

46



. 
2. Software Analysis/Requirement Analysis:

 studies the problem or requirements of software in
detail.

 After analyzing and elicitations of the requirements
of the user, a requirement statement known as
software requirement specification (SRS) is
developed.

47



. 
3. Software Design:
 most crucial phase in the development of a system.

The SDLC process continues to move from
the what questions of the analysis phase to the how.

 logical design is turned into a physical design.

 Based on the user requirements and the detailed
analysis the system must be designed.

48



. 
 Input, output, databases, forms, processing

specifications etc. are drawn up in detail.

 Tools and techniques used for describing the system
design are: Flowchart, ERD, Data flow diagram
(DFD), UML diagrams like Use case, Activity,
Sequence etc.

49



. 
4. Software Coding:
 Physical design into software code.

 Writing a software code requires a prior knowledge
of programming language and its tools. Therefore, it
is important to choose the appropriate programming
language according to the user requirements.

 A program code is efficient if it makes optimal use of
resources and contains minimum errors.

50



. 
5. Software Testing:
 Software testing is performed to ensure that

software produces the correct outputs i.e. free
from errors. This implies that outputs produced
should be according to user requirements.

 Efficient testing improves the quality of software.

 Test plan is created to test software in a planned and
systematic manner.

51



. 
6. Software Maintenance:
 This phase comprises of a set of software

engineering activities that occur after software is
delivered to the user.

 After the software is developed and delivered, it may
require changes. Sometimes, changes are made in
software system when user requirements are not
completely met.

 To make changes in software system, software
maintenance process evaluates, controls, and
implements changes.

52



. 
Class Work

Q2.
Mention different phases of Software
Development life cycle(SDLC), if you are
under the project of Library Management
system.

53



Thank You!!!

54



Tribhuvan University
Institute of Engineering

Pulchowk Campus
Department of Electronics and Computer Engineering

by
Santosh Giri

Lecturer, IOE, Pulchowk Campus.

Software Engineering
Chapter One

Software Process and requirements 

1



. 

Software 
Process Model 
(Continue…)

2



. 
What is Software process?
 When you work to build a product or system, it’s

important to go through a series of predictable steps—a
road map that helps you
create a timely, high-quality result. The road map that
you follow is called a “software process.”

 Who does it? Software engineers and their
managers adapt the process to their needs and then
follow it. In addition, the people who have requested
the software have in the process of defining, building,
and testing it.

3



. 

4

Why is it important?
Because it provides path, stability, control over your

project.

What are the steps?
At a detailed level, the process that you adopt
depends on the software that you’re building. One
process might be appropriate for creating software for
an aircraft avionics system, while an entirely different
process would be indicated for the creation of a
website.



. 

5

from a technical point of view:

A software process is a framework for the
activities, actions, and tasks that are required to
build high-quality software- Roger S. Pressman

https://en.wikipedia.org/wiki/Roger_S._Pressman


. 
1.3.1 Waterfall Model

6



. 

7

a. Waterfall model
i. Feasibility study

–Financial
–Technical
–Time etc.

ii. Requirement specification: To specify the requirements’
users specification should be clearly understood and the
requirements should be analyzed. This phase involves
interaction between user and software engineer, and
produces a document known as software requirement
specification (SRS).



. 

8

a. Waterfall model
iii. Design: Determines the detailed process of developing

software after the requirements are analyzed. It utilizes
software requirements defined by the user and translates
them into a software representation. In this phase, the
emphasis is on finding a solution to the problems defined in
the requirement analysis phase. The software engineer, in
this phase is mainly concerned with the data structure,
algorithmic detail, and interface representations.



. 

9

a. Waterfall model
iv. Coding: Emphasizes on translation of design into a

programming language using the coding style and
guidelines. The programs created should be easy to read and
understand. All the programs written are documented
according to the specification.

v. Testing: Ensures that the product is developed according to
the requirements of the user. Testing is performed to verify
that the product is functioning efficiently with minimum
errors. It focuses on the internal logics and external
functions of the software

.



. 

10

a. Waterfall model
vi. Implementation and maintenance: Delivers fully

functioning operational software to the user. Once
the software is accepted and deployed at the user’s
end, various changes occur due to changes in
external environment (these include upgrading new
operating system or addition of a new peripheral
device). The changes also occur due to changing
requirements of the user and the changes occurring
in the field of technology. This phase focuses on
modifying software, correcting errors, and
improving the performance of the software.



. 

11

a. Waterfall model



. 

12

a. Waterfall model



. 

13

b. prototype model
 The prototyping model is applied when there is an

absence of detailed information regarding input
and output requirements in the software.
 Used if the requirements are not preciously

specified.
 Prototyping model increases flexibility of the

development process by allowing the user to
interact and experiment with a working
representation of the product known as prototype.
A prototype gives the user an actual feel of the
system.



. 

14



. 

15

i.Requirements gathering and analysis: Prototyping
model begins with requirements analysis, and the
requirements of the system are defined in detail.
The user is interviewed to know the requirements
of the system.

ii.Quick design: When requirements are known, a
preliminary design or a quick design for the
system is created. It is not a detailed design,
however, it includes the important aspects of the
system, which gives an idea of the system to the
user. Quick design helps in developing the
prototype.



. 

16

iii.Build prototype: Information gathered from quick
design is modified to form a prototype. The first
prototype of the required system is developed
from quick design. It represents a ‘rough’ design
of the required system.

iv.User evaluation: Next, the proposed system is
presented to the user for consideration as a part of
development process. The users thoroughly
evaluate the prototype and recognize its strengths
and weaknesses, such as what is to be added or
removed.Comments and suggestions are collected
from the users and are provided to the developer.



. 

17

v. Prototype refinement: Once the user evaluates the
prototype, it is refined according to the
requirements. The developer revises the prototype
to make it more effective and efficient according
to the user requirement. If the user is not satisfied
with the developed prototype, a new prototype is
developed with the additional information
provided by the user. The new prototype is
evaluated in the same manner, as the previous
prototype,process continues until all the
requirements specified by the user are met. Once
the user is satisfied a final system is developed.



. 

18

vi. Engineer product: Once the requirements are
completely known, user accepts the final
prototype. The final system is thoroughly
evaluated and tested followed by routine
maintenance on continuing basis to prevent large-
scale failures and to minimize downtime.



. 

19



. 

20

c. Spiral Model
In 1980’s Boehm introduced a process model
known as spiral model. The spiral model
comprises of activities organized in a spiral,
which has many cycles. This model combines
the features of prototyping model and waterfall
model and is advantageous for large, complex
and expensive projects which involves high risk.



. 

21



. 

22

1. Each cycle of the first quadrant commences with 
identifying the goals for that cycle. In addition, it 
determines other alternatives, which are possible 
in accomplishing those goals.

2. Next step in the cycle evaluates alternatives based
on objectives and constraints. This process
identifies the project risks. Risk signifies that
there is a possibility that the objectives of the
project cannot be accomplished. If so the
formulation of a cost effective strategy for
resolving risks is followed. the strategy, which
includes prototyping, simulation, benchmarking..



. 

23

3. The development of the software depends on
remaining risks. The third quadrant develops the
final software while considering the risks that can
occur. Risk management considers the time and
effort to be devoted to each project activity, such
as planning, configuration management, quality
assurance, verification, and testing.

4. The last quadrant plans the next step, and includes 
planning for the next prototype and thus,comprises 
of requirements plan, development plan, 
integration plan, and test plan 



. 

24



. 

25

d. Evolutionary model 
 An Evolutionary model breaks up an overall solution

into increments of functionality and develops each
increment individually.

 The evolution model divides the development cycle
into smaller, "Incremental Waterfall Model" in
which users are able to get access to the product at the
end of each cycle.

 The users provide feedback on the product for
planning stage of the next cycle and the development
team responds, often by changing the product, plans
or process.



. 

26



. 

27



. 

28

RAD model



. 

29

V model



Thank You!!!

30



Tribhuvan University
Institute of Engineering

Pulchowk Campus
Department of Electronics and Computer Engineering

by
Santosh Giri

Lecturer, IOE, Pulchowk Campus.

Software Engineering
Chapter One

Software Process and requirements 

1



Chapter One: Software Process and requirements
Course Outline:                                                      12 hours, 20 Marks
1.1. Software crisis
1.2. Software characteristics
1.3. Software quality attributes
1.4. Software process model
1.5. Process iteration
1.6. process activities
1.7. Computer‐aided software engineering
1.8. Functional and non –functional requirements
1.9. User requirements
1.10. System requirement
1.11. Interface specification
1.12. The software requirements documents
1.13. Feasibility study
1.14. Requirements elicitation and analysis
1.15. Requirements validation and management

2



. 

3

What is requirement?

 Requirements describe how a system should act,
appear, or perform.
 For this, when users request for software, they

possess an approximation of what the new system
should be capable of doing.
 Requirements differ from one user to another user

and from one business process to another business
process.



. 

4

What is software requirement?

IEEE defines requirement as
“(1) A condition or capability needed by a user to

solve a problem or achieve an objective. (2) A
condition or capability that must be met or
possessed by a system or system component to
satisfy a contract, standard, specification, or other
formally imposed documents. (3) A documented
representation of a condition or capability as in (1)or

(2)”



. 

5

Guidelines for Expressing Requirements
 Sentences and paragraphs should be short and

written in active voice. Also, proper grammar,
spelling, and punctuation should be used.
 Conjunctions, such as ‘and’ and ‘or’ should be

avoided as they indicate the combination of several
requirements in one requirement.
 Each requirement should be stated only once so that

it does not create redundancy in the requirements
specification document.



. 

6

Types of Requirements 



. 

7

 A functional requirement describes what a software
system should do, while non-functional
requirements place constraints on how the system
will do so.

 Functional requirements specifies a function that a
system or system component must be able to
perform. Whereas, non-functional requirements
(also known as quality requirements) relate to
system attributes, such as reliability, response time
etc.



. 

8

Functional requirement
 A banking system must send perform requested transaction,

whenever a certain condition is met (i.e. account no,
password, etc).

Non-functional requirement
 Those transaction should be completed with a latency of no 

greater than 6 hours from such an activity.

 Note: Example of functional and non-functional is on the 
“Case study example”.



. 

9

Requirements Engineering Process

 The requirements engineering (RE) process is a series of
activities that are performed in requirements phase in
order to express requirements in software requirements
specification (SRS) document.

 These steps include feasibility study, requirements
elicitation, requirements analysis, requirements
specification, requirements validation, and requirement
management



. 

10Fig: Requirement engineering process



. 

11

STEP 1: FEASIBILITY STUDY 

Objectives of feasibility study:
 To determine whether the software can be

implemented using current technology and
within the specified budget and schedule or not.

 To determine whether the software can be integrated
with other existing software or not.

 To minimizes project failure. 



. 

12

Types of feasibility study:
Technical
 technical skills and capabilities of development team.
Assure that the technology chosen, has large number

of users so that they can be consulted when problems
arise.

Operational
 solution suggested by software development team is

acceptable or not.
whether users will adapt to new software or not.



. 

13

Types of feasibility study:
Economic feasibility/ Budget
 whether the required software is capable of

generating financial gains for an organization or
not.

 cost incurred on software development team
 estimated cost of hardware and software.
 cost of performing feasibility study.

Time
Whether the project will be completed on pre-

specified time or not.



. 

14

Feasibility Study Process
1.Information assessment:
 verifies that the system can be implemented using new

technology and within the budget.
2. Information collection:
 Specifies the sources from where information about software can

be obtained.
 Sources:
 users (who will operate the software)
 organization (where the software will be used).
 software development team (who understands user requirements and

knows how to fulfill them in software).

3. Report writing:
 Information about changes in software scope, budget, schedule,

and suggestion of any requirements in the system.



. 

15

STEP2:REQUIREMENTS ELICITATION
 Process of collecting information about software requirements

from different stakeholders (users, developer, project manager
etc.)

 Various issues:
1. Problems of understanding:
 Users are not certain about their requirements and thus are unable

to express what they require in software and which requirements
are feasible.

 This problem also arises when users have no or little knowledge
of the problem domain and are unable to understand the
limitations of computing environment of software.



. 

16

2. Problems of volatility:
 This problem arises when requirements change over time.
Elicitation Techniques
The commonly followed elicitation techniques are listed below:
1.Interviews:
 Ways for eliciting requirements, it helps software engineer,

users, & development team to understand the problem and
suggest solution for the problem.

 An effective interview should have characteristics listed
below:
 Individuals involved in interviews should be able to accept new ideas,

focus on listening to the views of stakeholders & avoid biased views. �
 Interviews should be conducted in defined context to requirements rather

than in general terms. E.g. a set of a questions or a requirements proposal.



. 

17

2.Scenarios:
 Helps to determine possible future outcome before

implementation.
 In Generally, a scenario comprises of:
 Description of what users expect when scenario starts.
Description of how to handle the situation when software is

not operating correctly.
Description of the state of software when scenario ends.

3.Prototypes:
 helps to clarify unclear requirements.
 helps users to understand the information they need to provide

to software development team.
4.Quality function deployment (QFD):

-Assignment 3



. 

18

STEP3: REQUIREMENT ANALYSIS
 It is the process of studying and refining requirements

Tasks performed in requirements analysis are:
 Understand the problem for which software is to be developed.
 Develop analysis model to analyze the requirements in the

software.
 Detect and resolve conflicts that arise due to unclear and unstated

requirements.
 Determine operational characteristics of software and how it

interacts with its environment.



. 

19

STEP4: REQUIREMENTS  SPECIFICATION
 Development of SRS document (software requirement

specification document.
Characteristics of SRS

1. Correct:
SRS is correct when
 all user requirements are stated in the requirements document.
 The stated requirements should be according to the desired

system.

2. Unambiguous:
 SRS is unambiguous when every stated requirement has only

one interpretation i.e. each requirement is uniquely interpreted.



. 

20

3. Complete:
 SRS is complete when the requirements clearly define what the

software is required to do.

4. Modifiable:
 The requirements of the user can change, hence, requirements

document should be created in such a manner where those
changes can be modified easily.

5. Ranked for importance and stability:
 All requirements are not equally important.



. 

21

6. Verifiable:
 SRS is verifiable when the specified requirements can be verified

with a cost-effective process to check whether the final software
meets those requirements or not.

7. Consistent:
 SRS is consistent when the individual requirements defined does

not conflict with each other.
 e.g., a requirement states that an event ‘a’ is to occur before

another event ‘b’. But then another set of requirements states that
event ‘b’ should occur before event ‘a’.

8. Traceable:
 SRS is traceable when the source of each requirement is clear and

it facilitates the reference of each requirement in future.



. 

22Fig : SRS Document template



. 

23

STEP 5 : REQUIREMENTS VALIDATION
WHY VALIDATION ?
 Errors present in the SRS will adversely affect the cost if they are

detected later in the development process or when the software is
delivered to the user.

Fig: Requirement Validation



. 

24

STEP 6: REQUIREMENTS MANAGEMENT
WHY ??
 To understand and control changes to system requirements.

Advantages of requirements management:
Better control of complex projects:
 Provides overview to development team with a clear

understanding of what, when and why software is to be delivered.

Improves software quality:
 Ensures that the software performs according to requirements to

enhance software quality.



. 

25

Reduced project costs and delays:
 Minimizes errors early in the development cycle, as it is

expensive to ‘fix’ errors at the later stages of the development
cycle. As a result, the project costs also reduced.

Improved team communications:
 Facilitates early involvement of users to ensure that their needs

are achieved.



. 

26

Requirements Management Process
 Requirements management starts with planning,

 Then, each requirement is assigned a unique ‘identifier’ so that it
can be crosschecked by other requirements. Once requirements
are identified, requirements tracing is performed.

 The objective of requirement tracing is to
ensure that all the requirements are well understood and are
included in test plans and test cases.

 Traceability information is stored in a traceability matrix, which
relates requirements to stakeholders or design
module.Traceability matrix refers to a table that correlates
requirements.



. 

27

U->dependency
R-> weaker Relationship



. 

28

Requirements change management

 It is used when there is a request or proposal for a
change to the requirements.

Fig: Required change management



Thank You!!!

29



Tribhuvan University
Institute of Engineering

Pulchowk Campus
Department of Electronics and Computer Engineering

by
Santosh Giri

Lecturer, IOE, Pulchowk Campus.

Software Engineering
Chapter 2

System Model

1



Chapter Two: System models
Course Outline: 3 hours, 5-7 Marks

2. System models (3 hours)
2.1. Context models
2.2. Behavioral models
2.3. Data and object models

2



. 

5

2.1. Context Models
 Contents model show what lies outside the system

boundaries.
 There exist only one circle or process that represents the

whole system.
 Purpose:to show expected inputs and outputs to and from

the system.



. 

6

Context Models



. 

7

Context Models



. 

8

2.2. Behavioral Model
Use case diagrams:
 shows the interactions between a system and its

environment (actors).
Activity diagrams:
 shows the activities involved in a process or in data

processing.
Sequence diagrams:
 shows interactions between objects within the system.
Start chart diagrams:
 shows how the system reacts to internal and external events.



. 

9

Elements of use case diagram:
a. Actor: 
 Actor is someone interacting with use case (system

function).
 Actor has responsibility toward the system (inputs),

and Actor have expectations from the system
(outputs)

 Actor triggers use case.



. 

10

b. Use case
 System function (process–automated or manual).

 Each Actor must be linked to a use case, while some
use cases may not be linked to actors.



11

USER

ADMIN

Data Collection
/Acquistion

Train with data acquired

Display Trainining Result

Train Result Analyse

Test Data Acquistion

Testing Data

Result

Validate

<<include>>

<<extend>>

<<include>>



. 

16

2.4. ER Model
 An Entity Relationship (ER) Diagram is a type of flowchart

that illustrates how “entities” such as people, objects or
concepts relate to each other within a system.

 ER Diagrams are most often used to design or debug
relational databases in the fields of software engineering,
business information systems, education and research.

 They use a defined set of symbols such as rectangles,
diamonds, ovals and connecting lines to depict the
interconnectedness of entities, relationships and their
attributes.



. 

17

Components of ER Model
 Entity
A definable thing—such as a person, object, concept or event. Examples:

a customer, student, car or product. Typically shown as a rectangle.

 Attributes
A property or characteristic of an entity. Often shown as an oval or circle.



. 

18

Components of ER Model
Attributes Types:

 Key

 Composite

 Multivalue

 Derived



. 

19

Components of ER Model
Relationship
How entities act upon each other or are associated with each

other.
 One to one

 One to many

 Many to one

 Many to many



20

ER Model Example[HMS]



21



. 

22

2.4. Data Flow Diagram
 A data flow diagram (DFD) maps out the flow of information for any

process or system. It uses defined symbols like rectangles, circles and
arrows and short text labels, to show data inputs, outputs, storage
points and the routes between each destination.

 They can be used to analyze an existing system or model a new one.
 components of data flow diagrams:
External entity:
 Entities are source and destination of information.
 Entities are represented by a rectangles with their respective

names.
Process:
 Activities, operation and action taken on the data.
 Represented by Circle or Round-edged rectangles.



. 

23

2.4. Data Flow Diagram
 Data store:

Files or repositories that hold information for later use, such as a
database table or a membership form.

 Data Flow:
The route that data takes between the external entities, processes and

data stores.
 DFD Notations:



. 

24

2.4. Data Flow Diagram
Levels of DFD:
 Level 0 - Highest abstraction level DFD is known as Level

0 DFD, which depicts the entire information system as one
diagram concealing all the underlying details. Level 0 DFDs
are also known as context level DFDs.

 Level 1 - The Level 0 DFD is broken down into more
specific, Level 1 DFD. Level 1 DFD depicts basic modules
in the system and flow of data among various modules.

 Level 2 - At this level, DFD shows how data flows inside
the modules mentioned in Level 1.



. 

25

2.4. Data Flow Diagram Example (SVS)

Signature
Recognition

System

User

Admin

Get Result

Train System
with Data

Provide Data

Get Result

Context free DFD [ level 0]



26Signature Verification system DFD [ level 1]

User

Data Acquisition
1.0

Training Data Set
3.0

Display Train 
Result

4.0

Image 
Preprocessing

2.0
Data Storage

Verification
5.0

Admin



27Signature Verification system DFD [ level 2]

User

Data Acquisition
1.0

Training Data 
Set
3.0

Image Resizing
2.1Data Storage

Acquire Test 
Data
5.1

Admin

Image Format 
Conversion

2.2

Comparing
5.2

Result
5.3

Display 
Accuracy Graph

4.1

Display Training 
Progress

4.2



28

Workout examples
On Case study Examples



Tribhuvan University
Institute of Engineering

Pulchowk Campus
Department of Electronics and Computer Engineering

by
Santosh Giri

Lecturer, IOE, Pulchowk Campus.

Software Engineering
Chapter 3

Architectural Design

1



Chapter Three: Architectural Design

Course Outline: 6 hours
1. Architectural design decisions
2. System organization
3. Decomposition styles
4. Control styles
5. Reference architectures

2



. 

3

What is Architectural Design?
 It is the design process for identifying the subsystems for

making a system and the framework for sub-system control
and communication.

 The output of this design process is a description of the
software architecture.

 Architectural design is an early stage of the system design
process. It represents the link between specification and
design processes and is often carried out in parallel with
some specification activities.

 It involves identifying major system components and their
communications.



. 

4

Architectural Design
 IEEE defines architectural design as:

 “The process of defining a collection of hardware and
software components and their interfaces to establish the
framework for the development of a computer system.”

 The software system needs the architectural design to
represents the design of software.



. 

5

Architectural Design
 The software that is built for computer-based systems can

exhibit one of many architectural styles.
Each style will describe a system category that consists of :
A set of components (e.g.: a database, computational modules) that

will perform a function required by the system.
A set of connectors will help in coordination, communication, and

cooperation between the components.
Conditions that how components can be integrated to form the

system.
Semantic models (logical models) that help the designer to

understand the overall properties of the system.
 The use of architectural styles is to establish a structure for

all the components of the system.



. 

6

Architectural Design
Software architectures can be designed at two levels of

abstraction:
 Architecture in the small
It is concerned with the architecture of individual programs. At

this level, we are concerned with the way that an
individual program is decomposed into components.

 Architecture in the large
It is concerned with the architecture of complex enterprise

systems that include other systems, programs, and program
components. These enterprise systems are distributed over
different computers, which may be owned and managed by
different companies.



. 

7

Architectural Design
Three advantages of explicitly designing and documenting

software architecture:
 Stakeholder communication:
Architecture may be used as a focus of discussion by system

stakeholders.
 System analysis:
Well-documented architecture enables the analysis of whether

the system can meet its non-functional requirements.
 Large-scale reuse:
The architecture may be reusable across a range of systems or

entire lines of products.



. 

8

Uses of architectural models:
 As a way of facilitating discussion about the system design:
A high-level architectural view of a system is useful for

communication with system stakeholders and project
planning because it is not cluttered with detail. Stakeholders
can relate to it and understand an abstract view of the
system. They can then discuss the system as a whole
without being confused by detail.

 As a way of documenting an architecture that has been
designed:

The aim here is to produce a complete system model that
shows the different components in a system, their interfaces
and their connections.



. 

9

Architectural Design decisions
 Architectural design is a creative process so the process

differs depending on the type of system being developed.
However, a number of common decisions span all design
processes and these decisions affect the non-functional
characteristics of the system:
Is there a generic application architecture that can be used?
How will the system be distributed?
What architectural styles are appropriate?
What approach will be used to structure the system?
How will the system be decomposed into modules?
What control strategy should be used?
How will the architectural design be evaluated?
How should the architecture be documented?



. 

10

Architectural Design decisions
The particular architectural style should depend on the non-

functional system requirements:
 Performance: localize critical operations and minimize

communications. Use large rather than fine-grain
components.

 Security: use a layered architecture with critical assets in
the inner layers.

 Safety: localize safety-critical features in a small number of
sub-systems.

 Availability: include redundant components and
mechanisms for fault tolerance.

 Maintainability: use fine-grain, replaceable components.



. 

11

Architectural Conflicts

 Using large-grain components improves performance but
reduces maintainability.

 Introducing redundant data improves availability but makes
security more difficult.

 Localising safety-related features usually means more
communication so degraded performance.



. 

12

Architectural models

 static models: which shows the major system components.
 dynamic models: which show the organization of the

system when it is executing.
 Interface model: that defines sub-system interfaces.
 Relationships model: such as a data-flow model that shows

sub-system relationships.
 Distribution model: that shows how sub-systems are

distributed across computers.



. 

13

System Organization

Reflects the basic strategy that is used to structure a system.
Three types:
 The Repository model
 Client-Server model
 Abstract Machine (Layered) model



. 

14

System Organization
The Repository model:
 Sub-systems must exchange data. This may be done in two

ways:
Shared data is held in a central database or repository and

may be accessed by all sub-systems.
Each sub-system maintains its own database and passes

data explicitly to other sub-systems.
 When large amounts of data are to be shared, the repository

model of sharing is most commonly used a this is an
efficient data sharing mechanism



. 

15

System Organization
The Repository model Architecture:



. 

16

System Organization
The Repository model:



. 

17

System Organization
The Client-Server model:
 Distributed system model which shows how data and

processing is distributed across a range of components, but
can also be implemented on a single computer.

 Set of stand-alone servers which provide specific services
such as printing, data management, etc.

 Set of clients which call on these services.

 Network which allows clients to access servers.



. 

18

System Organization
The Client-Server Architecture:



. 

19

System Organization
The Client-Server Architecture:



. 

20

System Organization
The Layered model:

 Used to model the interfacing of sub-systems.

 Organizes the system into a set of layers (or abstract
machines) each of which provide a set of services.

 Supports the incremental development of sub-systems in
different layers. When a layer interface changes, only the
adjacent layer is affected.



. 

21

System Organization
The Layered Architecture:



. 

22

System Organization
The Layered Architecture:



Thank You!!!

23



Tribhuvan University
Institute of Engineering

Pulchowk Campus
Department of Electronics and Computer Engineering

by
Santosh Giri

Lecturer, IOE, Pulchowk Campus.

Software Engineering
Chapter 3

Architectural Design

1



Chapter Three: Architectural Design

Course Outline: 6 hours
1. Architectural design decisions
2. System organization
3. Decomposition styles
4. Control styles
5. Reference architectures

2



. 

3

Modular Decomposition styles?
Styles of decomposing sub-systems into modules.

3



. 

4

Modular Decomposition styles?
Sub system and Components
 A sub-system is a system in its own right whose operation is

independent of the services provided by other sub-systems.
 A module is a system component that provides services to

other components but would not normally be considered as
a separate system.

 To make it short :
 a subsystem can exist without its parent system.
 a component cannot be used alone and must be part of a

system to exist.

4



. 

5

Modular Decomposition styles?
Sub system and Components
To take an analogy :
 a car is a sub-system of travel infrastructure.
 a wheel is a component of the car.

5



. 

6

Modular Decomposition styles?
 structural level where sub-systems are decomposed into

modules.
 Two modular decomposition models
Object Oriented decomposition:

An object model where the system is decomposed into
interacting object.

 Function oriented decomposition :
A pipeline or data-flow model where the system is
decomposed into functional modules which transform
inputs to outputs.

6



. 

7

Modular Decomposition?
Object models
 Structure the system into a set of loosely coupled objects

with well-defined interfaces.

 Object-oriented decomposition is concerned with
identifying object classes, their attributes and operations.

 When implemented, objects are created from these classes
and some control model used to coordinate object
operations.

7



. 

8

Modular Decomposition?
Object models (Invoice processing system)

8



. 

9

Modular Decomposition?
Object models (advantages)
 Objects are loosely coupled so their implementation can be

modified without affecting other objects.

 The objects may reflect real-world entities.

 OO implementation languages are widely used.

 However, object interface changes may cause problems and
complex entities may be hard to represent as objects.

9



. 

10

Modular Decomposition?
Functional models
 In function-oriented design, the system is divided into

many smaller sub-systems known as functions. These
functions are capable of performing significant task in the
system. The system is considered as top view of all
functions.

 This design mechanism divides the whole system into
smaller functions, which provides means of abstraction by
concealing (providing the means for data hiding) the
information and their operation. These functional modules
can share information among themselves by means of
information passing and using information available
globally. 10



. 

11

Modular Decomposition?
Functional models

11



. 

12

Modular Decomposition?
Functional model design process:
 The whole system is seen as how data flows in the system

by means of data flow diagram.
 DFD depicts how functions changes data and state of entire

system.
 The entire system is logically broken down into smaller

units known as functions on the basis of their operation in
the system.

 Each function is then described at large.

12



. 

13

Modular Decomposition?

Functional model Advantages

Assignment 2

Refer: Ian Sommerville’s book from Library

13



. 

14

Control styles/models
Are concerned with the control flow between sub-systems.

Two generic control styles
 Centralized control

One sub-system has overall responsibility for control and
starts and stops other sub-systems.

 Event-based control
Each sub-system can respond to externally generated events
from other sub-systems or the system’s environment.

14



. 

15

Control styles/models
Centralized control
A control sub-system takes responsibility for managing the

execution of other sub-systems.

Call-return model: Top-down subroutine model where
control starts at the top of a subroutine hierarchy and moves
downwards. Applicable to sequential systems.

Manager model: Applicable to concurrent systems. One
system component controls the stopping, starting and
coordination of other system processes.

15



. 

16

Centralized Control styles/models
Call-return model:

The main program can call Routines 1, 2 and 3; Routine 1
can call Routines 1.1 or 1.2; Routine 3 can call Routines 3.1
or 3.2; and so on.

16



. 

17

Centralized Control styles/models
Manager model (real time system control):

17



. 

18

Control styles/models
Event-driven systems:
 Two principal event-driven models
Broadcast models.
Interrupt-driven models.

Broadcast model
 Sub-systems register an interest in specific events. When

these occur, control is transferred to the sub-system which
can handle the event.

 Control policy is not embedded in the event and message
handler. Sub-systems decide on events of interest to them.

 However, sub-systems don’t know if or when an event will
be handled. 18



. 

19

Event Driven control styles/models
 Broadcast model

 components register an interest in specific events. When
these events occur, control is transferred to the component
that can handle the event.

19



. 

20

Event-driven Control styles/models
Interrupt-driven models.
 Used in real-time systems where fast response to an event is

essential.
 There are known interrupt types with a handler defined for

each type.
 Each type is associated with a memory location and a

hardware.
 Allows fast response but complex to program and difficult

to validate.

20



. 

21

Event-driven Control styles/models
 Interrupt-driven models.

21



Thank You!!!

22



Tribhuvan University
Institute of Engineering

Pulchowk Campus
Department of Electronics and Computer Engineering

by
Santosh Giri

Lecturer, IOE, Pulchowk Campus.

Software Engineering
Chapter 3

Architectural Design

1



Chapter Three: Architectural Design

Course Outline: 6 hours
1. Architectural design decisions
2. System organization
3. Decomposition styles
4. Control styles
5. Reference architectures

2



Objectives
 To explain the advantages and disadvantages of

different distributed systems architectures
 To discuss two principal models of distributed systems

architecture -client-server and distributed object
architectures

 To understand the concept of object request brokers
and the principles underlying the CORBA standards

 To introduce peer-to-peer and service-oriented
architectures as new models of distributed computing.

3



Topics covered

 Multiprocessor architectures
 Client-server architectures
 Distributed object architectures
 Inter-organisational computing

4



Distributed systems

 Virtually all large computer-based systems are now
distributed systems.

 Here, Information processing is distributed over
several computers rather than confined to a single
machine.

 Distributed software engineering is therefore very
important for enterprise computing systems.

5



System types

 Personal systems that are not distributed and that are
designed to run on a personal computer or
workstation.

 Embedded systems that run on a single processor or
on an integrated group of processors.

 Distributed systems where the system software runs
on a loosely integrated group of cooperating
processors linked by a network.

6



Distributed system characteristics(Advantages)

 Resource sharing
– A distributed system allows sharing of hardware and software

resources such as disks, printers, files & compilers.
 Concurrency

– Here, several processes may operate at the same time on separate
computers on the network called concurrent processing.

– Concurrent processing to enhance performance.
 Scalability

– It is the capability of the system that can be increased by adding new
resources to cope with new demands in the system.

– Increased throughput [how many units of information a system can
process in a given amount of time] by adding new resources.

 Fault tolerance
– The availability of several computers & potential for replicating

information means the distributed system can be tolerant of some
hardware and software failures i.e.

– The ability to continue in operation after a fault has occurred.
7



Distributed system disadvantages
 Complexity

– Typically, distributed systems are more complex than centralised
systems; makes it more difficult to understand their emergent properties
& to test these systems.

– Example- rather than the performance of the system being dependent
on execution speed of one processor, it depends

• on the network bandwidth and
• speed of the processor on the network

 Security
– The system may be accessed from several different computers, & the

traffic on the network may subject to eavesdropping.
– This makes it more difficult to ensure that the integrity of the data in

the system is maintained &
– The services are not degraded by the denial of attack . i.e.
– They are more susceptible to external attack.

8



Distributed system disadvantages
 Manageability

– The computers in a system may be different types and run on
different versions of operating system.

– Fault in one machine may propagate to other machines with
unexpected consequences.

– Means more effort required for system management.
 Unpredictability

– All users of the WWW know, distributed systems are unpredictable in
their response.

– Unpredictable responses depending on the system organisation and
network load.

– As all these may vary over a short period, the time taken to a user
request may vary dramatically from one request to another.

9



Distributed systems architectures

 Client-server architectures
– Distributed services which are called on by clients.
– Servers that provide services are treated differently from

clients that use services.
 Distributed object architectures

– No distinction between clients and servers.
– The server may be thought of as a set of interactive

objects whose location is irrelevant.
– Any object on the system may provide and use services

from other objects.

10



Middleware
 The components of the distributed system may be implemented on different

programming language & may execute on the completely different
 types of processors
 Models of data
 Information representation &
 Protocols

 Thus, it requires to manage these diverse parts, ensure that they communicate
and exchange data.

 Middleware refers to software that manages and supports the different
components of a distributed system. In essence, it sits in the middle of the
system.

 Middleware is usually off-the-shelf [E.g.: MS package] rather than specially
written software.

 Examples
 Transaction processing monitors;
 Data converters;
 Communication controllers.

11



3.6 Multiprocessor architectures
 Simplest distributed system model where System composed of

multiple processes which may (but need not) execute on
different processors.

 This process is common in large real-time systems. These
systems:
Collect information
Make decision using information &
Send signals to actuator [A mechanism that causes a device

to be turned on or off, adjusted or moved] to modify the
system’s environment.

 Distribution of process to processor may be pre-determined or
may be under the control of a dispatcher [Software that
determines what pending tasks should be done next and
assigns the available resources to accomplish it].

12



Example - A multiprocessor traffic control 
system

Traff ic lights

Light
control
process

Traff ic light control
processor

Traff ic f low
processor

Operator consoles
Traffic flow sensors and

cameras

Sensor
processor

Sensor
control
process

Display
process

13



Example - A multiprocessor traffic control system
 In fig. – a simplified model of the traffic control

system is shown.
 A set of distributed sensors collects information on

the traffic flow & processes locally.
 Operators make decisions using this information &

give instruction to a separate traffic light control
process

 Here, there are separate logical processes for
managing sensors, control room & traffic light which
run on separate processors.

14



3.7 Client-server architectures
 The application is modelled as a set of servers that

provide services and a set of clients that use these
services.

 Clients know of servers but servers need not know of
clients.

 Clients and servers are separate logical processes as
shown in fig below ( Fig.1)

 Several server processes can run on a single server
processor so there is not necessarily 1:1 mapping
between processors & processes.

15



Example - A client-server system

s1

s2 s3

s4c1

c2 c3 c4

c5

c6
c7 c8

c9

c10

c11

c12

Client process

Server process

Fig. 1

16



Example - Computers in a C/S network

Network

SC1SC2

CC1 CC2 CC3

CC5 CC6CC4

Server
computer

Client
computer

s1, s2 s3, s4

c5, c6, c7

c1 c2 c3, c4

c8, c9 c10, c11, c12

Fig.2 

17



Example - Computers in a C/S 
network

 Fig. 2 shows the physical architecture of the
system with six client & two server computers.
 These can run the client & server processes as

shown in Fig. 1

18



Thin and fat clients
 The simplest client server architecture is called two tier client

server architecture, where an application is organized as
 a server(or multiple identical servers) &
 a set of clients

 The two tier client server architecture can take two forms:
 Thin-client model

 In a thin-client model, all of the application processing and data
management is carried out on the server.

 The client is simply responsible for running the presentation software.

 Fat-client model
 In this model, the server is only responsible for data management.
 The software on the client implements the application logic and the

interactions with the system user.

19



Thin and fat clients

Thin-client
model

Fat-client
model Client

Client

Server

Data management
Application processing

Presentation

Server

Data management

Presentation
Application processing

20



Thin client model
 Used when legacy systems [software that has been around a

long time and still fulfills a business need, e.g. voicemail system] are
migrated to client server architectures.

 The legacy system acts as a server in its own right
with a graphical interface implemented on a client.

 A major disadvantage is that it places a heavy
processing load on both the server and the network.

21



Fat client model
 More processing is delegated to the client as the

application processing is locally executed.
 The server is essentially a transaction server that

manages all database transactions.
 Example- Banking ATM system, where ATM is the

client & the server is a mainframe running the
customer account database.

 The hardware in the teller machine carries out a lot of
customer related processing associated with a
transaction.

 More complex than a thin client model especially for
management. New versions of the application have to
be installed on all clients.

22



A client-server ATM system

Account server

Customer
account
database

Tele-
processing

monitor

ATM

ATM

ATM

ATM

23



A client-server ATM system
 Fig. above is the ATM distributed system
 The ATMs are not connected directly to the customer

database but to a teleprocessing monitor.
 It is a middleware system that organizes

communication with remote clients & serializes the
client transaction processing by the database.

 Using serial transaction means that the system can
recover from faults without corrupting system data.

24



Disadvantages-Fat client model

 The fat-client model distributes processing more
effectively than thin client model but the system
management is more complex

 Application functionality is spread over many
computers

 When the application software is to be changed,
reinstallation is needed on every computer

 This can be a major cost if there are hundreds of
clients in the system.

25



Disadvantages- Two-tier architecture
 The three logical layers-presentation, application

processing & data management must be mapped onto
two computer systems-the client & the server.

 This may either be problems with scalability &
performance if the thin client model is chosen, or the
problems of system management if the fat client
model is used

 To avoid these issues, a three-tier client server
architecture is used.

26



Three-tier architectures

 In a three-tier architecture,
 the presentation,
 the application processing &
 the data management are logically separate processes that execute on a separate

processor.

 Allows for better performance than a thin-client
approach and is simpler to manage than a fat-client
approach.

 A more scalable architecture - as demands increase,
extra servers can be added.

27



A 3-tier C/S architecture

Client

Server

Data
management

Presentation
Server

Application
processing

28



Example- An internet banking system

Database server

Customer
account
database

Web serverClient

Client

Account service
provision

SQL
SQL query

HTTP interaction

Client

Client

29



Example- An internet banking system

 Here, the
 Bank’s customer database ( usually hosted on a mainframe computer) provides

data management services;
 a web server provides application services such as transferring of cash,

generate statements, pay bills etc. &
 The user’s own computer with an internet browser is the client.

 This system is scalable because it is relatively
easy to add new web servers as the number of
customers increase.

30



Advantages-A 3-tier C/S architecture
 The use of three-tier architecture is this case allows

the information transfer between the web server and
the database server to be optimized.

 Network traffic is reduced.

 More rapid response to clients.

 Efficient middleware that supports database queries
in SQL is used to handle information retrieval from
the database.

31



Multi-tier Architecture
 At times it is appropriate to extend three tier

architecture to multi-tier where applications need to
access and use the data from different databases

 In such case , an integration server is positioned
between application servers and database servers.

 The integration server collects the distributed data &
presents it to the application as if it were from single
database.

32



Use of C/S architectures

33



3.8 Distributed object architectures
 There is no distinction in a distributed object architectures between

clients and servers.
 Each distributable entity is an object that provides services to other

objects and receives services from other objects.
 Objects may be distributed across a number of computers on a

network.
 Object communication is through a middleware system called an

object request broker.
 Its role is to provide a seamless interface between objects.
 It provides set of services that allows objects to communicate & to

be added to & removed from the system
 However, distributed object architectures are more complex to

design than C/S systems.

34



Distributed object architecture

Obj ect request broker

o1 o2 o3 o4

o5 o6

S (o1) S (o2) S (o3) S (o4)

S (o5) S (o6)

35



Advantages of distributed object architecture

 It allows the system designer to delay decisions
on where and how services should be provided.
 Service providing objects may execute on any node of the network.
 There is no need to decide in advance where application logic objects are located.

 It is a very open system architecture that allows
new resources to be added to it as required.

 The system is flexible and scalable.
 It is possible to reconfigure the system

dynamically with objects migrating across the
network as required.

36



Uses of distributed object architecture

 As a logical model that allows to structure and
organise the system. In this case, one thinks about
how to provide application functionality solely in
terms of services and combinations of services.

 As a flexible approach to the implementation of
client-server systems. The logical model of the
system is a client-server model but both clients and
servers are realised as distributed objects
communicating through a common communication
framework.

37



A data mining system
Database 1

Database 2

Database 3

Integrator 1

Integrator 2

Visualiser

Display

Repor t gen.

38



Data mining system

 Here, each database can be encapsulated as a
distributed object with an interface that provides read
only access to its data.

 Integrator objects are each concerned with specific
types of relationships, & they collect from all the
databases to try to deduce the relationships.

 There might be integrator object that is concerned
with seasonal variations in goods sold & another that
is concerned with relationships between different
types of goods.

39



Data mining system

 The logical model of the system is not one of service
provision where there are distinguished data
management services.

 It allows the number of databases that are accessed to
be increased without disrupting the system.

 It allows new types of relationship to be mined by
adding new integrator objects.

40



CORBA

 CORBA is an international standard for an Object
Request Broker - middleware to manage
communications between distributed objects.

 Middleware for distributed computing is required at 2
levels:
– At the logical communication level, the middleware allows objects on different 

computers to exchange data and control information;
– At the component level, the middleware provides a basis for developing 

compatible components. CORBA component standards have been defined.

41



CORBA application structure-
Object Management architecture(Siegal,1998)

CORBA services

Domain
facilities

Horizontal C ORBA
facilities

Application
obj ects

Obj ect request broker

42



Application structure

 This architecture above proposes distribution application should be
made up of number of components

 Application objects -that are designed & implemented for the
application.

 Standard objects -that are defined by the OMG(Object Management
Group) for a specific domain which cover Insurance, health care etc.

 Fundamental CORBA services that provides basic distributed
computing service such as directories and security management.

 Horizontal CORBA facilities such as user interface facilities.
 The term horizontal facilities suggests that these facilities are

common to many application domains

43



CORBA standards

 COBRA standards cover all aspect of the above vision.
 There are four major elements to these standards.
 An object model for application objects

A CORBA object is an encapsulation of state with a well-defined,
language-neutral interface defined in an IDL (interface definition
language).
 An object request broker that manages requests for object services.
 A set of general object services likely to be required by many

distributed applications ( e.g. Directory service)
 A set of common components built on top of these basic services.

44



CORBA objects

 CORBA objects are comparable, in principle, to
objects in C++ and Java.

 They MUST have a separate interface definition that
is expressed using a common language (IDL) similar
to C++.

 There is a mapping from this IDL to programming
languages (C++, Java, etc.).

 Therefore, objects written in different languages can
communicate with each other.

45



Object request broker (ORB)

 The ORB handles object communications. It knows
of all objects in the system and their interfaces.

 Using an ORB, the calling object binds an IDL stub
that defines the interface of the called object.

 Calling this stub results in calls to the ORB which
then calls the required object through a published IDL
skeleton that links the interface to the service
implementation.

46



ORB-based object communications

o1 o2

S (o1) S (o2)

IDL
stub

IDL
skeleton

Obj ect Request Broker

47



Inter-ORB communications

 ORBs are not usually separate programs but are a set
of objects in a library that are linked with an
application when it is developed.

 ORBs handle communications between objects
executing on the sane machine.

 Several ORBS may be available and each computer
in a distributed system will have its own ORB.

 Inter-ORB communications are used for distributed
object calls.

48



CORBA services

 Naming and trading services
– These allow objects to discover and refer to other objects on the network.

 Notification services
– These allow objects to notify other objects that an event has occurred.

 Transaction services
– These support atomic transactions and rollback on failure.
– Transactions are fault-tolerance facility that supports recovery from errors

during an update operation.
– If an object update operation fails, then the object state can be rolled back to its

state before the update was started.

49



3.9 Inter-organizational computing
 For security and inter-operability reasons, most distributed

computing has been implemented at the organizational level.
 An organization has a number of servers & spreads its computation

load across these.
 Because these all located within the same organization, local

standards, management and operational processes apply.
 Newer models of distributed computing have been designed to

support inter-organizational computing rather than intra-
organization distributed computing where different nodes are
located in different organizations.

 Two of these approaches are discussed here:
1. Peer to Peer architectures
2. Service oriented architectures

50



Peer-to-peer architectures

 Peer to peer (p2p) systems are decentralized systems
where computations may be carried out by any node
in the network.

 The overall system is designed to take advantage of
the computational power and storage of a large
number of networked computers.

 Most p2p systems have been personal systems but
there is increasing business use of this technology.

51



P2p architectural models

One can look at architecture of P2P applications
from two perspectives:

1. The logical network architecture
– Decentralized architectures;
– Semi-centralized architectures.

2. Application architecture
– The generic organization of components in each architecture type;

making up a p2p application.

• Here, focused on network architectures.

52



Decentralized p2p architecture

n1

n2 n3

n4

n5

n6

n7

n8

n9 n10 n11

n12

n13

n13

53



Decentralized p2p architecture

 Here, the nodes in the network are not simply
functional elements but are also communication
switches that can route data & control signals from
one node to another

 Fig above represents a decentralized document
management system-used by the consortium of
researchers to share documents.

 Each member maintains own document store

54



Decentralized p2p architecture
 However, when the document is retrieved, the node retrieving

that document makes it available to other nodes
 Someone who needs the document issues a search command

that is sent to nodes in that locality .
 These nodes check whether they have the document &
 If so return to the requestor
 If they do not have route search to another node
 When the document is finally discovered , the node can route

the document back to the original requestor

55



Semi-centralized p2p architecture

Discovery
server

n1

n2

n3

n4

n5

n6

56



Semi-centralized p2p architecture

 With the sue of decentralized architecture the
are obvious overheads in the system in that
 same search may be process by many different nodes &
 there is significant overhead in replicated peer communication

 Alternative- semi centralized where, within the
network one or more nodes act as servers to
facilitate node communications.

57



Service-oriented architectures

 Based around the notion of externally provided
services (web services).

 A web service is a standard representation for some
computational or information resourse that are
accessible across the web
– A tax filing service could provide support for users to fill in their tax forms and 

submit these to the tax authorities.

58



Web service

 An act or performance offered by one party to
another. Although the process may be tied to a
physical product, the performance is essentially
intangible and does not normally result in ownership
of any of the factors of production.

 Service provision is therefore independent of the
application using the service.

59



Web services

Service
registry

Service
requestor

Service
provider

Publish

Bind

Find

service

60



Services and distributed objects

 Provider independence.
 Public advertising of service availability.
 Potentially, run-time service binding.
 Opportunistic construction of new services through

composition.
 Pay for use of services.
 Smaller, more compact applications.
 Reactive and adaptive applications.

61



Services standards

 Services are based on agreed, XML-based
standards so can be provided on any platform
and written in any programming language.

Key standards
 SOAP - Simple Object Access Protocol;
 WSDL - Web Services Description Language;
 UDDI - Universal Description, Discovery and Integration.

62



Services scenario

 An in-car information system provides drivers with
information on weather, road traffic conditions, local
information etc.

 This is linked to car radio so that information is
delivered as a signal on a specific radio channel.

 The car is equipped with GPS receiver to discover its
position and,

 based on that position, the system accesses a range of
information services.

 Information may be delivered in the driver’s
specified language.

63



Automotive system

User inter face

Locator

Discovers car
position

Weather
info

Receives request
from user

Receiver

Receives
information stream

from services

Transmitter

Sends position and
information request

to services

Radio

Translates dig ital
info stream to

radio signal

In-car software system

Mobile Info Service

Facilities
info

Translator

Road
locator

Traff ic
info

Collates information

Road traf f ic info

command
gps coord

gps
coord gps coordgps coord

Language
infoInfo

stream

Service discovery

Finds available
services

64



Layered application architecture

 Presentation layer
Concerned with presenting information(results of a

computation) to the user with all the user
interaction.

 Application processing layer
Concerned with implementing the logic of the

application.
 Data management layer

Concerned with managing all the database
operations.

65



Application layers

 

Application processing
layer

 

66



Thank You!!!

67



Tribhuvan University
Institute of Engineering

Pulchowk Campus
Department of Electronics and Computer Engineering

by
Santosh Giri

Lecturer, IOE, Pulchowk Campus.

Software Engineering
Chapter 4

Real Time System

1



Overview

Real Time System
Real Time Operating System

Monitoring and Control System
Data Acquisition System

2



Real Time System
 System where the correct functioning of the system

depends on the results produced by the system and
the time at which these results are produced.

 Systems which monitor and control their
environment.

 Associated with hardware devices
 Sensors: Collect data from the system environment;
 Actuators: Change (in some way) the system's environment;
 Time is critical i.e. Real-time systems must respond

within specified times.

3



Real Time System
 Soft real-time system
Operation is degraded, if results are not produced
according to the specified timing requirements.

 Hard real-time system:
Operation is incorrect, if results are not produced
according to the timing specification

4



Stimulus/Response Systems
 Given a stimulus [event that evokes a specific

function] , the system must produce a response within
a specified time.

 Periodic stimuli: Stimuli which occur at predictable
time intervals. E.g.: a temperature sensor may be
polled 10 times per second.

Aperiodic stimuli: Stimuli which occur at
unpredictable times. E.g.: a system power failure may
trigger an interrupt which must be processed by the
system.

5



Architectural Considerations

 Because of the need to respond to timing demands
made by different stimuli/responses, the system
architecture must allow for fast switching between
stimulus/events.

 Timing demands of different stimuli are different so a
simple sequential loop is not usually sufficient.

6



7



8

Microphone, 
thermistor

Loudspeaker, 
LED



9



10



11

Examples:
VxWorks
QNX
eCos
RTLinux

Especially VxWorks has a long history in critical
applications, for example: in cars and various NASA
space platforms.



12



1.3. Monitoring and control systems

 Important class of real-time systems.

 Monitoring systems examine sensors and report their
results.

 Control systems take sensor values and control
hardware actuators.

13



RTS design process
 Identify stimuli and associated responses.

 Define the timing constraints associated with each
stimulus and response.

 Design algorithms for stimulus processing and
response generation.

14



Monitoring System  burglar alarm systems

 Sensors
 Movement detectors, window sensors, door sensors;
 50 window sensors, 30 door sensors and 200 movement

detectors;
 Voltage drop sensor.
 Actions
 When an intruder is detected, police are called automatically;
 Lights are switched on in rooms with active sensors;
 An audible alarm is switched on;
 The system switches automatically to backup power when a

voltage drop is detected.

15



Stimuli to be processed
 Power failure
Generated aperiodically by a circuit monitor.
When received, the system must switch to backup

power within 50 ms.

 Intruder alarm
 Stimulus generated by system sensors.
Response is to call the police, switch on building

lights and the audible alarm.

16



17



18



Control systems
 A burglar alarm system is primarily a monitoring

system. It collects data from sensors but no real-time
actuator control.

 Control systems are similar but, in response to sensor
values, the system sends control signals to actuators.

 An example of a monitoring and control system is a
system that monitors temperature and switches
heaters on and off.

19



Data acquisition system
 Collect data from sensors for subsequent processing

and analysis.

 Data collection processes and processing processes
may have different periods and deadlines.

 Data collection may be faster than processing e.g.
collecting information about an explosion

20



21



Thank You!!!

22



Tribhuvan University
Institute of Engineering

Pulchowk Campus
Department of Electronics and Computer Engineering

by
Santosh Giri

Lecturer, IOE, Pulchowk Campus.

Software Engineering
Chapter 5

Software Reuse

1



Chapter Three: Software reuse

Course Outline: 3 hours
1. The Software Reuse
2. Design patterns
3. Application framework
4. MVC patterns
5. Application system reuse

2



. 

3

Software reuse

 Software engineering has been more focused on
original development but it is now recognised that to
achieve better software, more quickly and at lower
cost, we need to adopt a design process that is based
on systematic software reuse.

3



. 

4

Reuse-based software engineering
 Application system reuse

The whole of an application system may be reused either
 by incorporating it without change into other systems

(COTS reuse) or
by developing application families that have common

architecture
 Component reuse
Components of an application from sub-systems to single

objects may be reused
 Object and function reuse
Software components that implement a single well-

defined object or function may be reused
4



. 

5

Benefits of Software Reuse being trustworthy and
reliable.

5



. 

6

Problems of Software Reuse

6



. 

7

5.1. Reuse landscape

7



. 

8

Reuse planning factors
 The development of schedule for the software
 The expected software lifetime
 The background, skills and experience of the

development team
 The criticality of the software and its non-functional

requirements
 The application domain
 The execution platform for the software

8



. 

9

5.2. Design Patterns 
 In software engineering, a design pattern is a

general repeatable solution to a commonly occurring
problem in software design.

 A design pattern isn't a finished design that can be
transformed directly into code.

 It is a description or template for how to solve a
problem that can be used in many different
situations.

9



. 

10

Pattern elements
There are four essential elements of the design patterns:
 Name
A name that is a meaningful reference to the pattern

 Problem description.
Description of the problem & explains what patterns may be

applied.
 Solution description.
Not a concrete design but a template for a design solution that can

be instantiated in different ways.
 Consequences
The results and trade-offs of applying the pattern
Helps the designer to understand whether a pattern can be

effectively applied in particular situation
10



. 

11

Pattern elements
Two graphical representations of same data.

A: 40
B: 25
C: 15
D: 20

Observer 1

A

B

C

D

Observer 2

Subj ect

0

50

25

A B C D

11



. 

12

5.3. Framework 
 A framework is something that gives programmers most of the

basic building blocks they need to make an app.
 Imagine you’re cooking feast for 20 people. You’re going to

need an oven, a stove, a fridge, a sink, probably hundreds of
ingredients, utensils, plates – etc.

 A framework is like a fully stocked kitchen. It has all of these
things ready for you to cook and you just need to work out what
to make with it all!

 But, there are a few downsides to having a ready made kitchen.
Maybe the oven isn’t quite the right size, or there aren’t quite
enough plates, or you’re lacking some ingredients, but for the
most part, everything you want is in there where you can find it
and you can make it work.

12



. 

13

Framework 
 Programming without a framework is like trying to build the

perfect kitchen from scratch before preparing the meal.
 First you need to decide what you’re going to make. If it

needs an oven, you can decide to either buy the perfect
oven, or build your own makeshift one.

 If your ingredients need refrigeration, you can work out
some way to keep them cold.

 Maybe you like certain brands of ingredients? Well, you’ve
got the freedom to buy just those brands, instead of what a
pre-stocked kitchen might give you work.

13



. 

14

 A software framework is an all inclusive, reusable
programming environment that gives specific usefulness as
a major aspect of a bigger programming stage to encourage
advancement of programming applications, items and
arrangements.

 Software frameworks may incorporate bolster programs,
compilers, code libraries, device sets, and application
programming interfaces (APIs) that unite all the diverse
segments to empower advancement of an undertaking or
arrangement.

14



. 

15

MVC PATTERN

15



. 

16

MVC PATTERN
The model manages fundamental behaviors and data of the
application. It can respond to requests for information,
respond to instructions to change the state of its
information, and even to notify observers in event-driven
systems when information changes. This could be a
database, or any number of data structures or storage
systems. In short, it is the data and data-management of the
application.

16



. 

17

Now let's say we have an Online Banking System, from where
the user needs to check his account balance.

View:
 The UI form which the end user sees and sends the request

from. Typically in this case it could either be the online
web browsers or the mobile UI, from where the end
user sends the request to check his balance.

17



. 

18

Controller
 Now what if the user desires to do an online fund transfer

from one account to another. In this case you would be
needing a whole lot of business logic, that
1.accepts the user request,
2.checks his balance in Account 1,
3.deducts the funds,
4. transfers to Account 2,
and updates the balance in both cases.

 What the Controller part here essentially does is accept the
request from user to transfer funds, and redirect it to the
necessary components that would do the job of transfer.

18



. 

19

Model
 Here it responds to requests from users to just read the

data(handled from the view) or do an update of the
data(handled by the controller).

 In this case the Model, would be the part of the application
that interacts with the database here either to read or write
the data.

 So the user makes a request from the browser to check his
balance amount, the Model would be the part of the
application, that receives it either from view, processes the
request, and sends the data back.

19



Thank You!!!

20



Chapter 6: CBSE 

Component Based Software Engineering 

Component-based software engineering (CBSE) is an approach to software development that 
relies on software reuse. It emerged from the failure of object-oriented development to support 
effective reuse.  Single object classes are too detailed and specific. Components are more 
abstract than object classes and can be considered to be stand-alone service providers. 

SC’s are parts of a system or application. Components are a means of breaking the complexity of 
software into manageable parts. Each component hides the complexity of its implementation 
behind an interface. Components can be swapped in and out like the interchangeable parts of a 
machine. This reduces the complexity of software development, maintenance, operations and 
support and allows the same code to be reused in many places. The following are illustrative 
examples of a component. 

Views 
User interface components for different requests, views and scenarios. For example, difficult 
components can be used to display the same information in a web page and mobile app. 
Models 
Components that handle requests or events including business rules and data processing. For 
example, a model might handle a bill payment request for an internet banking website. 
Controllers 
A controller is a component that decides what components to call for a particular request or 
event. For example, a controller might dynamically load different views for a bill payment based 
on factors such as language, transaction status or channel. 
APIs 
A component that can be reused across multiple systems and applications can be packaged and 
distributed as an API. For example, an open source API to connect to a particular database. 
 
CBSE essentials 

 Independent components specified by their interfaces. 
 Component standards to facilitate component integration. 
 Middleware that provides support for component inter-operability. 
 A development process that is geared to reuse. 

 
CBSE Design principles 
Apart from the benefits of reuse, CBSE is based on sound software engineering design 
principles: 

 Components are independent so do not interfere with each other; 
 Component implementations are hidden; 
 Communication is through well-defined interfaces; 



 
CBSE Pr

 C
tr

 C
 E

co
 R

co
6.1.The C
 

 Comp

roblems 
Component t
rusted? 

Component c
Emergent pr
ompositions

Requirements
omponent an
CBSE Proc

ponent platfo

trustworthine

certification -
roperty pred
s be predicted
s trade-offs 
nd another? 
ess: 

orms are shar

ess - how c

- who will c
diction - h
d? 
- how do w

red and redu

can a compo

ertify the qu
how can th

we do trade-o

uce developm

onent with n

uality of com
he emergent

off analysis 

ment costs. 

no available

mponents? 
t properties

between the

e source cod

s of compo

e features o

de be 

onent 

f one 

 

 



The different steps in the component development 
process are: 
1. Finding components that may be used in the product. Here all possible components are 

listed for further investigation. 
2. Select the components that fit the requirements of the product. 
3. Create a proprietary component that will be used in the product. We do not have to find 

these types of components since we develop them ourselves. 
4. Adapt the selected components so that they suit the existing component model or 

requirement specification. Some component needs more wrapping than others. 
5. Compose or deploy the product. This is done with a framework or infrastructure for 

components. 
6. Replace old versions of the product with new ones. This is also called maintaining the 

product. There might be bugs that have been fixed or new functionality added. 
Advantages:  

 faster development,  
 lower costs of the development,  
 better usability,  
 to reduce the time to market,  
 To meet rapidly emerging consumer demands. Etc 

Disadvantages:  
 when you buy a component you do not know exactly its behavior,  
 you do not have control over its maintenance, 
 the implementation is quite hard, 
 Process of improving reuse has been long and laborious etc. 
 Security is another major concern for the 

developers who reuse the components available over the Internet. There may be a virus 
inside that component and may pass all the information of the business organization to 
attacker.  

 
 
6.2. Components 
Components provide a service without regard to where the component is executing or its 
programming language 

 A component is an independent executable entity that can be made up of one or more 
executable objects; 

 The component interface is published and all interactions are through the published 
interface; 

A software component is a software element that conforms to a component model and can be 
independently deployed and composed without modification according to a composition 
standard. - Councill and Heinmann: 



 A softwa
explicit c
subject to
 
Compon

 T
  I
 T

co
Compon

Compon
A compo
and deplo
Example

 E
 C

are compon
context depe
o compositio

nent as a ser
The compone
It does not ha

The services 
omponent in

nent Charac

nents and ob
onent model
oyment. 
s of compon

EJB model (E
COM+ mode

nent is a un
endencies on
on by third-p

rvice provid
ent is an inde
ave to be com
offered by 

nteractions ta
cteristics: 

bjects 
l is a definit

nent models 
Enterprise Ja
l (.NET mod

nit of compo
nly. A softwa
parties.- Szy

der 
ependent, ex
mpiled befo
a compone

ake place thr

ion of stand

are  
ava Beans) 
del) 

osition with
are compone
yperski 

xecutable ent
re it is used 

ent are made
rough that in

dards for com

h contractua
ent can be de

tity. 
with other c
e available t
nterface. 

mponent imp

ally specified
eployed inde

components. 
through an 

plementation

d interfaces
ependently a

interface an

n, document

s and 
and is 

nd all 

tation 

 

 



 Corba Component Model 
The component model specifies how interfaces should be defined and the elements that should 
be included in an interface definition 
 
Elements of components model 

 
 
6.3. Component Composition: 

 The process of assembling components to create a system. 
 Composition involves integrating components with each other and with the component 

infrastructure. 
 Normally you have to write ‘glue code’ to integrate components.  

Types: 
 Sequential composition: where the composed components are executed in sequence. 

This involves composing provides interfaces of each component. 
 Hierarchical composition: where one component calls on the services of another. The 

provides interface of one component is composed with the requires interface of another. 
 Additive composition: where the interfaces of two components are put together to create 

a new component. 



 



Tribhuvan University
Institute of Engineering

Pulchowk Campus
Department of Electronics and Computer Engineering

by
Santosh Giri

Lecturer, IOE, Pulchowk Campus.

Software Engineering
Chapter Seven

Verification and Validation

1



V vs V

2

Verification Validation
Are we building the system right? Are we building the right system?
Verification is the process of evaluating
products of a development phase to find
out whether they meet the specified
requirements.

Validation is the process of evaluating
software at the end of the development
process to determine whether software
meets the customer expectations and
requirements.

The objective of Verification is to make
sure that the product being develop is as
per design specifications.

The objective of Validation is to make
sure that the product actually meet up
the user’s requirements.

Following activities are involved
in Verification: Reviews, Meetings and
Inspections.

Following activities are involved
in Validation: Testing like black box
testing, white box testing etc.

Verification process checks whether the
outputs are according to inputs or not.

Validation process checks whether the
software is accepted by the user or not.

Verification comes before the
Validation

Validation comes after the Verification.



. 

3

V and V process

 Is a whole life-cycle process - V & V must be applied at
each stage in the software process.

It has two principal objectives
 The discovery of defects in a system;
 The assessment of whether or not the system is useful

and useable in an operational situation.



. 

4

V and V Goal

 Verification and validation should establish confidence
that the software is fit for purpose.

 This does NOT mean completely free of defects. Rather,
it must be good enough for its intended use and the type
of use will determine the degree of confidence that is
needed.



. 

5

Software Inspections

Software Inspections refers to peer review of any work
product by trained individuals who look for defects using
a well defined process- Wikipedia

What are software inspections (reviews)?
Meetings during which designs and code are reviewed by 

people other than the original developer.



. 

6

Software Inspections
 It is usually manual and a static technique that is

applied in the early development cycle.

 Software inspection is regarded as the most formal type
of review.

 It is led by the trained moderators and involves peers
to examine the product.

 The defects found during this process are documented
in a issue log (checklist).



. 

7

Software Inspections
Note:
Static Testing:
code is not executed. Rather it manually checks the code, requirement documents,

and design documents to find errors. Hence, the name "static".
The main objective of this testing is to improve the quality of software products by

finding errors in the early stages of the development cycle. This testing is also
called a Non-execution technique or verification testing.

Static testing involves manual or automated reviews of the documents. This review
is done during an initial phase of testing to catch Defect early in STLC. It
examines work documents and provides review comments

Dynamic Testing:
A code is executed. It checks for functional behavior of software system, memory/ 

cpu usage and overall performance of the system. Hence the name "Dynamic"
The main objective of this testing is to confirm that the software product works in 

conformance with the business requirements. This testing is also called an 
Execution technique or validation testing.

Dynamic testing executes the software and validates the output with the expected 
outcome. Dynamic testing is performed at all levels of testing and it can be 
either black or white box testing.



. 

8

Inspections preconditions 1

 A group of participants is nominated.�
 Participants must be familiar with inspections

procedures.
 Each participant has a well defined role,
i.e. participant may be a moderator, an author, an inspector,

a reader or a recorder.
 A precise specification must be available.
 Team members must be familiar with the organization

standards.



. 

9

Inspections preconditions 2

 Syntactically correct code or other system
representations must be available.

 An error checklist should be prepared.
 Management must accept inspection that will increase

costs early in the software process.
 Management should not use inspections for staff

appraisal i.e. finding out who makes mistakes.



. 

10

Inspections process



. 

11

Inspections process
 System overview presented to inspection team.

 Code and associated documents are distributed to
inspection team in advance.

 Inspection takes place and discovered errors are noted.

 Modifications are made to repair discovered errors.

 Re-inspection may or may not be required.



. 

12

Inspections Roles



. 

13

Inspection checklist
 Checklist of common errors should be used to drive the

inspection.
 Error checklists are programming language dependent

and reflect the characteristic errors that are likely to arise
in the language.

 In general, the 'weaker' the type checking, the larger the
checklist.

 Check-list examples:
 Initialisation,
ConstantNaming,
 loopTermination
ArrayBounds, etc.



Inspection checks 1

Data  faults Are all program variables initialised before their values are
used?
Have all constants been named?
Should the upper bound of arrays be equal to the size of  the
array or S ize  -1?
If cha racter strings are used, is a de limiter explicitly
assi gned?
Is there any possi bility of buffer overflow?

Control faults For each co nditional statement, is t he condition correct?
Is eac h loop certain t o terminate?
Are comp ound statements c orrectly bracketed?
In case statements, are a ll possi ble cases acc ounted for?
If a break is  required after each case in case statements, has
it been  included?

Input/output faults Are all input variables u sed?
Are all output variables assi gned a value before they are
output?
Can unexpected inputs cause corruption?

14



Inspection checks 2

15



. 

16

Inspection Rate
 500 statements/hour during overview.

 125 source statement/hour during individual preparation.

 90-125 statements/hour can be inspected in ‘I’ meeting.

 Inspection is therefore an expensive process.

 Inspecting 500 lines of code with 40 man/hours effort -
cost around $3200.



. 

17

Formal Methods
 Formal methods are a particular kind of mathematically-

based techniques for the specification, development and
verification of s/w and h/w systems.

 Major goal of software engineers:
 To develop reliable system but how?
Formal Methods:
Mathematical languages, techniques and tools.
Used to specify and verify systems.
Goal:

Help engineers construct more reliable systems.



. 

18

Formal Methods
 Formal methods can be applied at various points through

the development process
Specification
Verification

Specification:
 give a description of the system to be developed and its

properties.
Verification:
prove or disprove the correctness of a system with respect

to the formal specification or property.
 The use of formal methods can contribute to the

reliability and robustness of a design.



. 

19

Formal Methods
 However the high cost of using formal methods means

that they are usually only used in the development of
high-integrity systems, where safety or security is very
important.

Example of high-integrity systems:
Transport, communications, health and energy are all

representative example of critical system where errors is
not permitted.



. 

20

Arguments for Formal Methods

 Producing a mathematical specification requires a
detailed analysis of the requirements and this is likely to
uncover errors.

 They can detect implementation errors before testing
when the program is analyzed alongside the
specification.



. 

21

Arguments against Formal Methods
 Require specialized notations that cannot be understood

by domain experts.

 Very expensive to develop a specification and even more
expensive to show that a program meets that
specification.

 It may be possible to reach the same level of confidence
in a program more cheaply using other V & V
techniques.



. 

22

Cleanroom Software Engineering
 The name is derived from the 'Cleanroom‘ process in

semiconductor fabrication. The philosophy is “defect
prevention rather than defect removal”.

 Way of s/w development in which defect are avoided by
using formal methods of development and rigorous
(strict) inspection process.

 Objective of this approach is “zero defect s/w”.



. 

23

Cleanroom Software Engineering



. 

24

Cleanroom Software Engineering
Process is based on five strategic activities:
Formal specification:
 The software to be developed is formally specified. A state-

transition model which shows system responses to stimuli is
used to express the specification.

Incremental development:
 The software is partitioned into increments which are

developed and validated separately using the Cleanroom
process. These increments are specified, with customer input,
at an early stage in the process.



. 

25

Structured programming:
 Only a limited number of control and data abstraction

constructs are used. The program development process is a
process of stepwise refinement of the specification.

Static verification:
 The developed software is statically verified using rigorous

software inspections. There is no unit or module testing
process for code components.

Statistical testing of the system:
 The integrated software increment is tested statistically, to

determine its reliability. These statistical tests are based on
an operational profile which is developed in parallel with the
system specification.



Thank You!!!

26



Tribhuvan University
Institute of Engineering

Pulchowk Campus
Department of Electronics and Computer Engineering

by
Santosh Giri

Lecturer, IOE, Pulchowk Campus.

Software Engineering
Chapter 8

Software Testing and cost estimation

1



Types of Testing (Exam)
1. Unit Testing
 While coding, the programmer performs some tests on

that unit of program to know if it is error free.
 Testing is performed under white-box testing approach.
 Unit testing helps developers to decide that individual

units of the program are working as per requirement and
are error free.

2. Integration Testing
 Even if the units of software are working fine

individually, there is a need to find out if the units is
integrated together will also work without errors.

2



3. System Testing 
 software is compiled as product and then it is tested as a

whole.
 software is tested such that it works fine for different

operating system.
 Performed by developers and testers.
4. Acceptance Testing:
 Tested for user-interaction and response. This is

important because even if the software matches all user
requirements and but user does not like the way it
appears or works, it may be rejected.

 Is performed by independent set of testers as well as
stakeholders, clients.

3



4. Acceptance Testing types:
4.1. Alpha Testing
 team of developer themselves perform testing by using

the system, as if it is being used in work environment.

 This is performed to assess the Product in the
development/testing environment by a specialized
testers team usually called alpha testers. Here, the testers
feedback, suggestions help to improve the Product usage
and also to fix certain bugs.

4



4. Acceptance Testing:
4.2. Beta Testing
 After the software is tested internally, it is handed over

to the users to use it under their production environment
only for testing purpose. product is not as yet the
delivered product

 Continuous feedback from the users is collected and the
issues are fixed

5



Black box vs. white box testing (Exam)
Black box testing White box testing
Testing techniques without any
knowledge of internal working of
application.

Testing techniques in which tester
must have knowledge of internal
working of application.

Knowledge of programming is not
necessary.

Knowledge of programming &
internal logic of code is necessary.

Less time consuming. More time consuming

Usually testing performed by end-
users and also by testers &
developers.

Normally testing is performed by
testers & developers.

Focus on what is performed. Focus on how it is performed.

Tester is unaware of internal
architecture.

Tester is aware of internal
architecture.

6



Integration testing
 Involves building a system from its components and

testing for problems that arise from component
interactions.

 Top-down integration testing
In this approach testing is conducted from main

module to sub module, if the sub module is not
developed, a temporary program called STUB is used
to simulate the sub module.

 Bottom-up integration testing
In this approach testing is conducted from sub module

to main module, if the main module is not developed,
a temporary program called DRIVERS is used to
simulate the main module.

7



Incremental integration testing

T3

T2

T1

T4

T5

A

B

C

D

T2

T1

T3

T4

A

B

C

T1

T2

T3

A

B

Test sequence 1 Test sequence 2 Test sequence 3

8

A,B,C,D-Components
T1 to T5 – test sets



 In the above fig. A,B,C,D are the components & T1
to T5 are the related sets of tests .

 T1,T2,T3 are first run on the system composed of
component A & component B( the minimal system),
If these reveal defects, they are corrected.

 Component C is integrated & T1,T2,T3 is repeated to
ensure that there have not been unexpected
interactions with A & B.

 Test set T4 is also run to the system & so on for D
with addition of T5.

Incremental integration testing

9



Release testing
 The process of testing a release of a system that will

be distributed to customers.
 Primary goal is to increase the supplier’s confidence

that the system meets its requirements.
 Release testing is usually black-box or functional

testing
Based on the system specification only;
Testers do not have knowledge of the system

implementation.

10



Black-box testing

IeInput test da ta

OeOutput test r esults

System

Inputs causing
anomalous
behaviour

Outputs w hich r eveal
the pr esence of
defects

11



Black-box testing
 Fig illustrates the model of the system that is assumed in

black box testing.
 Tester presents inputs to the component or the system &

examines the corresponding outputs.
 If the outputs are not those predicted(i.e. if outputs are in

set Oe ), then the test has detected a problem with the
software.

 When testing system releases, one should try to break the
software, choosing test case that are in the set Ie. i.e. aim
should be to select inputs that have a high probability of
generating system failures.

12



Testing guidelines
Testing guidelines are hints for the testing team to help

them choose tests that will reveal defects in the
system.
 Choose inputs that force the system to generate all

error messages.
 Design inputs that cause buffers to overflow.
 Repeat the same input or input series several times.
 Force invalid outputs to be generated.
 Force computation results to be too large or too

small.

13



Case study for testingscenario1
A student in Scotland is studying American History and has been asked to write a paper on “Frontier 

mentality in the American West from 1840 to 1880”. To do this, she needs to find sources from a range of 
libraries. She logs on to the LIBSYS system and uses the search facility to discover if she can access 
original documents from that time. She discovers sources in various US university libraries and downloads 
copies of some of these.  However, for one document, she needs to have confirmation from her university 
that she is a genuine student and that use is for non-commercial purposes. The student then uses the facility 
in LIBSYS that can request such permission and registers her request. If granted, the document will be 
downloaded to the registered library’s server and printed for her. She receives a message from LIBSYS 
telling her that she will receive an e-mail message when the printed document is available for collection.  

14



System tests for scenario1 

1 . T es t the login mec hanism us ing correct and inco rrect logins to chec k
that valid  users  are  ac cep ted and  invalid  users  are  reje cted.

2 . T es t the search facility u sing d ifferent queries agains t known sources to
check that the  search mechanism  is  actually finding  docu ments.

3 . T es t the system pre sentation fac ility to check that in formation about
docu ments  is  displayed prop erly.

4 . T es t the mechanism  to  reques t perm ission  for  downloading.

5 . T es t the e-mail response indica ting that the downloaded docum ent is
available.

15



8.2 Component testing
 Component testing is a method where testing of each

component in an application is done separately.

 There are different types of components may be
tested at this stage:
 Individual functions or methods within an object;
 Object classes with several attributes and methods;
 Composite components with defined interfaces

used to access their functionality.

16



Object class testing

Complete test coverage of a object class involves:

 Testing all operations associated with an object;

 Setting and interrogating all object attributes;

 Exercising the object in all possible states.

17



8.3 Test case design
 Involves designing the test cases (inputs and outputs)

used to test the system.

 The goal of test case design is to create a set of tests
that are effective in validation and defect testing.

 Example in Case Study example

18



Thank 
You!!!



Tribhuvan University
Institute of Engineering

Pulchowk Campus
Department of Electronics and Computer Engineering

by
Santosh Giri

Lecturer, IOE, Pulchowk Campus.

Software Engineering
Chapter 8

Software Testing and cost estimation

1



. 

2

Project Planning:
 Project planning is an organized and integrated management process,

which focuses on activities required for successful completion of the
project.

 It helps in better utilization of resources and
optimal usage of the allotted time for a project.

Objectives of project planning
 Define roles and responsibilities of the project management team

members.
 Ensure that project management team works according to business

objectives
 Check feasibility of schedule and user requirements.



. 

3

Project Scheduling
 Project scheduling is concerned with determining the time

limit required to complete the project.
 An appropriate project schedule aims to complete the

project on time, and also helps in avoiding additional cost
that is incurred when software is not developed on time.

Various factors that delay project schedule
Unrealistic deadline
 Project schedule is affected when the time allocated for completing a

project is impractical and not according to the effort required for it.
Under-estimation of resources
 Under-estimation of resources leads to delay in performing tasks of

the project.



. 

4

Changing user requirements:
 Sometimes, project schedule is affected when user requirements are

changed after the project has started. This affects the project schedule,
and thus more time is consumed both in revision of project plan and
implementation of new user requirements.

Difficulties of team members
 Software project can also be delayed due to unforeseen difficulties of

the team members. For example, some of the team members may
require leave for personal reasons.

Lack of action by project management team
 Project management team does not recognize that the project is

getting delayed. Thus they do not take necessary action to speed up
the software development process and complete it on time.



. 

5

BASICS OF COST ESTIMATION
 Cost estimation is the process of approximating the costs

involved in the software project.

 Cost estimation should be done before software
development is initiated since it helps the project manager
to know about resources required and the feasibility of the
project.

 There are many parameters or factors, such as complexity,
time availability, and reliability, which are considered
during cost estimation process. However, software size is
considered as important parameters for cost estimation.



. 

6

Software Sizing:
 Before estimating cost, it is necessary to estimate the

accurate size of software.
 This is a difficult task as many software are of large size.

Therefore, software is divided into smaller components to
estimate size.

 This is because it is easier to calculate size of smaller
components, as the complexity involved in them is less than
the larger components.

 There are mainly two approaches followed for estimating size:
Direct approach size can be measured in terms of lines of code (LOC)
Indirect approach  size can be measured in terms of functional point

(FP).



. 

7

1. Lines Of Code(LOC)
 LOC can be defined as the number of delivered lines of

code in software excluding the comments and blank lines.

If comments and blank lines are excluded from the software sizing,
then Why to include them?
Blank lines Included to improve readability of code.

Comments  Included to help in code understanding as well as during
maintenance.

But, these blank lines and comments do not contribute to any kind of the
functionality so not considered in LOC for size estimation.



. 

8

Advantages
 Very easy to count and calculate from the developer code.

Disadvantages
 LOC is language depended.
 Same computation in python may have smaller code than C++.

 Varies from one organization of code to another
organization of code. Example:

for( int i=0;i<5;i++)
printf(“%d”,i);

Here, lines of code =2 for( int i=0;i<5;i++)
{

printf(“%d”,i);
}
Here, lines of code =4

Same operation but differ in size of the code.



. 

9

2. Function Point(FP)
 Function point metric is used to measure effort in a project.

 Some features FP considered to compute the size are:
Number of external inputs (EI)
Users and other applications act as a source of external inputs
and provide distinct application oriented data or information.

Number of external outputs (EO)
Each external output provided by the application
External outputs refer to reports, screens, error message, and so
on.



. 

10

 Number of external inquires (EQ):
Used to sends data or control information outside the application.

 Number of internal logical files (ILF):
Logical grouping of data that resides within the application boundary,

such as database, Storage file, Intermediate buffer.
These files are maintained through external inputs.

 Number of external interface files (EIF):
Logical grouping of data that resides external to the application, such

as data files on tape or disk.



. 

11

Steps in function point analysis:

 Count the number of functions of each proposed type.

 Compute the Unadjusted Function Points(UFP) as
UFP=∑{F*weight}

 Compute Complexity/Value Adjustment Factor(CAF) as
CAF= 0.01*⅀(Fi) +0.65

 Find the Function Point Count(FPC) as
FP = U.F.P * CAF



. 

12

Step1:Compute the Unadjusted Function Points(UFP):
 Categorize each of the five function types as low, average or high

based on their complexity. Multiply count of each function type with
its weighting factor and find the weighted sum.

i.e. UFP=∑{F*weight}
 The weighting factors for each type based on their complexity are as

follows:
Function Type Weight or Factor

Low Average High

External Inputs 3 4 6

External Output 4 5 7

External Inquiries 3 4 6

Internal Logical Files 7 10 15

External Interface Files 5 7 10



. 

13

Step 2 : Calculate Final FP as

FP = U.F.P (unadjusted functional point) * CAF(complexity
adjustment factor).

where CAF= 0.01*⅀(Fi) + 0.65
i=1 to 14 i.e. total number of questions where each
question have answer with scale value 0 to 5.

⅀Fi sum of all scale value [0-5] from 1 to 14.



. 

14

The value adjustment factors are based on the response to these 14 
questions, which are listed below:
1. Is reliable backup and recovery required by the system?
2. Is data communication required to transfer the information?
3. Do distributed processing functions exist? 
4. Is performance vital?
5. Does the system run under immensely utilised operational environment?
6. Is on-line data entry required by system?
7. Is it possible for the on-line data entry (that requires the input transaction) 
to be built
over multiple screens or operations?
8. Is updation of internal logical files allowed on-line?
9. Are the inputs, outputs, files, or inquires complex?
10. Is the internal processing complex?
11. Is the code reusable?
12. Does design include conversion and installation?
13. Does system design allow multiple installations in different 
organizations?
14. Is the application easy to use and does it facilitate changes? 



. 

15

Example:
Given the following parameters, compute FP. Complexity

adjustment factors and weighting factors are average.
user i/p =50
user o/p=40
user enquiries =35
user files =6
external interface =4

Unadjusted FP=50*4+40*5+35*4+6*10+4*7=628
Complexity AF=0.01*(14*Average →3)+0.65=1.07
Function of Point=UFP*CAF=628*1.07=671.96



. 

16

Advantages

 Independent of Language and technical tool

 Directly estimated from requirements before design
and coding.

Disadvantages
 More complex calculation than LOC.



. 

17

Cost Estimation Models
Algorithmic models:
 Estimation in these models is performed with the help of

mathematical equations, which are based on historical data
or theory.

 In order to estimate cost accurately, various inputs are
provided to these algorithmic models.

 These inputs include software size and other parameters.
 The various algorithmic models used are COCOMO,

COCOMO II, and software equation.



. 

18

Non-algorithmic models: 
 Estimation in these models depends on the prior

experience and domain knowledge of project managers.

 Note that these models do not use mathematical equations
to estimate cost of software project.

 The various non-algorithmic cost estimation models are
expert judgment, estimation by analogy, and price to win
etc.



. 

19

Constructive Cost Model(COCOMO)
 COCOMO is one of the most widely used software

estimation models in the world.
 In this model, size is measured in terms of thousand of

delivered lines of code (KDLOC).
 In order to estimate effort accurately, COCOMO model divides

projects into three categories :

1. Organic projects:
 These projects are small in size (not more than 50 KDLOC.
 Example of organic project are, business system, inventory

management system, payroll management system, and library
management system.



. 

20

2. Semi-detached projects:
 The size of semi-detached project is not more than 300 KDLOC.

 Examples of semi-detached projects include operating system,
compiler design, and database design.

3. Embedded projects:
 These projects are complex in nature (size is more than 300 KDLOC).

 Example of embedded projects are software system used in avionics
and military hardware.



. 

21

Constructive cost model is based on the hierarchy of three
models, basic model, intermediate model, and advance
model.

1. Basic Model:
 In basic model, only the size of project is considered while calculating

effort.
 To calculate effort, use the following equation (known as effort

equation):
E = A × (size)^B .........(i)

where E is the effort in person-months and
size is measured in terms of KDLOC.



. 

22

The values of constants ‘A’ and ‘B’ depend on the type of the software
project. In this model, values of constants (‘A’ and ‘B’) for three
different types of projects are listed in Table.

Example:
if the project is an organic project having a size of 30 KDLOC, then

effort is calculated using equation,
E = 3.2× (30)^1.05
E = 114 Person-Month



. 

23

2. Intermediate Model:
 In intermediate model, parameters like software reliability and

software complexity are also considered along with the size, while
estimating effort.

 To estimate total effort in this model, a number of steps are followed,
which are listed below:

 Calculate an initial estimate of development effort by considering the size in
terms of KDLOC.

 Identify a set of 15 parameters, which are derived from attributes of the current
project. All these parameters are rated against a numeric value, called
multiplying factor.

 Effort adjustment factor (EAF) is derived by multiplying all the multiplying
factors with each other.



. 

24

The COCOMO II Effort Equation:

Effort(Person-Month) = 2.94(Initial calibration) * EAF * (KDLOC)E

Where,
EAF: Effort Adjustment Factor derived from the 15 Cost Drivers or

multiplying factors (make assumption if value are not given in exam)
E: Exponent derived from the five Scale Drivers (make Assumption if

value not given)

Example:
A project with all Nominal Cost Drivers and Scale Drivers would have an “EAF” of

1.00 and exponent “E” of 1.0997. Assuming that the project is projected to consist of
8,000 source lines of code.

Then by Using COCOMO II estimation
Effort = 2.94 * (1.0) * (8)1.0997 = 28.9 Person-Months 



. 

25

In the same example if effort multipliers are given then

If your project is rated Very High for Complexity (effort multiplier of
1.34), and Low for Language & Tools Experience (effort multiplier
of 1.09), and all of the other cost drivers are rated to be Nominal
(effort multiplier of 1.00) then,

Effort Adjustment Factor (EAF) = 1.34 * 1.09* 1 = 1.46
Effort = 2.94 * (1.46) * (8)1.0997 = 42.3 Person-Months



. 

26

COCOMO II Schedule Equation:
The COCOMO II schedule equation predicts the number of months

required to complete your software project. It is predicted as:
Duration=3.67(Initial calibration) *(Effort)SE

Where,
Effort: Effort from the COCOMO II effort equation.
SE: Schedule equation exponent derived from the five Scale Drivers

Example:
Continuing previous example and assuming the schedule equation

exponent of 0.3179 that is calculated from the five scale drivers.

Duration=3.67*(42.3)0.3179=12.1months
Average staffing = Effort/Duration

= (42.3 Person-Months) / (12.1 Months) = 3.5 people



. 

27



Thank 
You!!!



Tribhuvan University
Institute of Engineering

Pulchowk Campus
Department of Electronics and Computer Engineering

by
Santosh Giri

Lecturer, IOE, Pulchowk Campus.

Software Engineering
Chapter 9

Software Quality Management

1



Software Quality?

It is the degree of conformance to explicit or implicit
requirements and expectations.

Explicit: clearly defined and documented.
Implicit: not clearly defined and documented but
indirectly suggested.
Requirements: business/product/software requirements.
Expectations: mainly end-user expectations.

Short and simple:
 The lack of bugs
 Low defect rate
 High reliability ( no. of failures per hours)

2



McCall’s Quality Factors  already discussed

3



Software Quality Assurance?

Software Quality Assurance is a planned and systematic way
of creating an environment to assure that the software product
being developed meets the quality requirements.

Refers to the implementation of well-defined standards and
methods (such as ISO-9000 or CMMI model).

This process is controlled and determined at managerial
level.

4



SQA Activities & Tasks

1. Prepare a SQA plan for a product
 The plan is developed during project planning and

reviewed by all interested parties.
 SQA activities, performed by the s/w engineering team &

SQA team are governed by the plan.

2. Participate in the development of the project’s s/w
process descriptions
The s/w engineering team select a process for work to be
performed.
The SQA groups reviews the process descriptions for the
agreements with the organizations policy, standards etc.

5



SQA Activities & Tasks

3. Review s/w engineering activities to verify compliance
(agreement) with the defined s/w process
The SQA group identifies, documents and tracks deviations
from the process and verify that and corrections have been
made.

4. Audits designed s/w work product to verify compliance
with those defined as part of the s/w process
The SQA groups reviews selected work products, identifies
documents, tracks deviations and verify that correctness have
been made and periodically reports the results of its work to
the project manager.

6



SQA Activities & Tasks

5.Ensure that deviation in s/w work and work product are
documented and handled according to the documented
procedure
Deviation occurred in s/w product development process has
been documented according to documentation procedure.

6.Periodically reports any non-compliance(agreement)
and reports to the senior management
Non agreement items are tracked and reports to the senior
management.

7



Formal Technical Reviews
FTR is the software quality control activities performed by
software engineers.
It is conducted as a meeting and will be useful only if it is
properly planned, controlled & attended.

Features of FTR
1. The review meeting

Advance preparations should be made.
Between 3 to 5 people are involved.
Duration should be less than 2 hrs.

The review meeting will be generally attended by review
leader, producers & reviewers and decides whether to:

Accept the project.
Reject the project due to errors.
Accept the product conditionally.

8



FTR Features continue…

2. Review reporting & record keeping
During FTR a reviewer actively records all issues that have
been raised during FTR.
At the end of the meeting the review issue list is produced.
It answers:

What was reviewed?
Who reviewed it?
What were the finding & conclusions?

3. Review guidelines
Guidelines for the conduct of FTR is established in advance
and distributed to all the members of FTR groups.

9



Reviews Guidelines
Review the product, not the producer.
Set an agenda and maintain it.
Limit debate and rebuttal {disproval}.
identify problem areas, but don't attempt to solve every
problem noted.
Take written notes.
Limit the number of participants and insist upon advance
preparation.
Develop a checklist for each product that is likely to be
reviewed.
Allocate resources and schedule time for FTRs.
Conduct meaningful training for all reviewers.
Review your early reviews.

10



Formal approach to SQA

Over past two decades, a small but the vocal segment of the
software engineering community has argued that a more
formal approaches to SQA is required.
Assuming that computer program is a mathematical object.
Rigorous syntax & semantics can be defined for every
language & A rigorous{strict} approach to the specification
of the software is available.
And if the requirement model{specification} & the
programming language can be represented in a rigorous
manner,
So it should be possible to apply mathematical proof of
correctness to demonstrate that the program confirms exactly
to its specifications.

11



Statistical Quality Assurance
Assuming that computer program is a mathematical object, So it
should be possible to apply mathematical proof of correctness to
demonstrate that the program confirms exactly to its specifications.
Statistical quality assurance steps:
 Information about software defects are collected & categorized.
 An attempt is made to trace each defect to its underlying cause.
 Use pareto principle to trace defect:
“80% of software problems are caused by 20% of bugs”

i.e. most of the problems are caused by a handful of serious bugs.
“80% of the defects can be traced to 20% of all possible causes”.

i.e. Isolate 20% (“The vital few”)
 Once vital few identified, move to correct the problem.
Application of statistical SQA & pareto principle can be

summarized as:
“Spend your time focusing on things that really matters but at first, be sure

that you understand what really matters.”

12



Statistical Quality Assurance
Although hundreds of errors are uncovered, all can be tracked
to one of the following causes:
Incomplete or erroneous specification (IES)
Misinterpretation of customer communication (MCC)
Intentional deviation from specification (IDS)
 Violation of programming standards ( VPS )
Error in data representation (EDR)
Inconsistent module interface (IMI)
Error in design logic (EDL)
Incomplete or erroneous testing (IET)
Inaccurate or incomplete documentation (IID)
Error in programming language translation of design (PLT)
Ambiguous or inconsistent human-computer interface (HCI)
Miscellaneous (MIS)

13



Statistical Quality Assurance

To apply SQA following table is build:

14

Err
or

Total Serious Moderate Minor

NO. % NO % NO % NO %

IES 205 20 34 27 68 18 103 24

MCC 156 17 19 9 68 18 76 17

IDS 48 5 1 1 24 6 23 5

VPS 25 3 0 0 15 4 10 2



Software Measurement and metrics

Software measurement:
concerned with deriving a numeric value for an attribute of a software.

Software metric
Any type of measurement which relates to a software system, process or
related documentation.
Lines of code in a program, the Fog index-readability test, number
of person-days required to develop a component.

Allow the software and the software process to be quantified.
May be used to predict product attributes or to control the software
process.
Product metrics can be used for general predictions or to identify
anomalous components.

15



Software product metrics

16

Software Metrics Description

Fan-in/ Fan-out Fan-in is a measure of the number of functions or methods that call some other
function or method (say X). Fan-out is the number of functions that are called by
function X. A high value for fan-in means that X is tightly coupled to the rest of the
design and changes to X will have extensive knock-on effects. A high value for
fan-out suggests that the overall complexity of X may be high because of the
complexity of the control logic needed to coordinate the called components.

Length of Code This is a measure of the size of a program. Generally, the larger the size of the code
of a component, the more complex and error-prone that component is likely to be.
Length of code has been shown to be one of the most reliable metrics for predicting
error proneness in components.

Length of
identifiers

This is a measure of the average length of distinct identifiers in a program. The
longer the identifiers, the more likely they are to be meaningful and hence the more
understandable the program.

Depth of
conditional
Nesting

This is a measure of the depth of nesting of if-statements in a program. Deeply
nested if statements are hard to understand and are potentially error-prone.

Fog index This is a measure of the average length of words and sentences in documents. The
higher the value for the Fog index, the more difficult the document is to
understand.



Object oriented metrics

17

OO Metrics Description

Depth of
inheritance
tree

This represents the number of discrete levels in the inheritance tree where
subclasses inherit attributes and operations (methods) from super-classes. The
deeper the inheritance tree, the more complex the design. Many different object
classes may have to be understood to understand the object classes at the leaves of
the tree.

Method fan-in/fan-
out

This is directly related to fan-in and fan-out as described above and means
essentially the same thing. However, it may be appropriate to make a distinction
between calls from other methods within the object and calls from external
methods.

Weighted methods
per class

This is the number of methods that are included in a class, weighted by the
complexity of each method. Therefore, a simple method may have a complexity of
1 and a large and complex method a much higher value. The larger the value for
this metric, the more complex the object class. Complex objects are more likely to
be more difficult to understand. They may not be logically cohesive so cannot be
reused effectively as super-classes in an inheritance tree.

Number of
overriding
operations

This is the number of operations in a super-class that are over-ridden in a subclass.
A high value for this metric indicates that the super-class used may not be
an appropriate parent for the sub-class.



Capability Maturity Model Integration (CMMI)

It is a process improvement model whose goal is to help
organizations improve their performance. CMMI can be used
to guide process improvement across a project, a division, or
an entire organization. Currently supported version is CMMI
Version 1.3.

18



Maturity level 1- Initial

Processes are usually ad hoc and chaotic. The organization
usually does not provide a stable environment.
Success in these organizations depends on the competence
and heroics of the people in the organization and not on the
use of proven processes.
Maturity level 1 organizations often produce products and
services that work; however, they frequently exceed the
budget and schedule of their projects.
Maturity level 1 organizations are characterized by a
tendency to over commit, abandon processes in the time of
crisis, and not be able to repeat their past successes.

19



Maturity level 2- Managed

At maturity level 2, an organization has achieved all the
specific and generic goals of the maturity level 1 process
areas.

At Maturity Level 2, an organization’s development
processes are repeatable and produce consistent results.

At this stage, all business projects are managed so that
processes are “planned, performed, measured and controlled”

20



Maturity level 3- Defined

 At this stage, organizations are more proactive
{proactive development you solve matters before they
become an issue} than reactive.

 Businesses understand their shortcomings, how to address
them and what the goal is for improvement.

 Organization has well characterized and understood
processes that are described in standards, procedures,
tools and methods,

21



Maturity level 4- Quantitatively managed

 Achieve All the specific and generic goals at level 3 and
more measured and controlled than level 3.

 Processes have reached a stage where they can be
measured using defined metrics that demonstrate how the
process is beneficial to business operations.

 Processes have been repeatedly tested, refined and
adapted in multiple conditions across the organization.

 At this level, your process should easily adapt to suit
other projects in the organization and to stand as a
template for future process development.

22



Maturity level 5 - Optimizing

 Final level of CMMI, achieve all the specific and generic
goal at level 4.

 processes are continually monitored and improved as
needed.

 At this level, organizations processes should always
remain flexible enough to accommodate new technologies
and innovation in the organization.

23



Software Reliability

Definition:
 In statistical term, it is the probability of failure free

operation of a computer program in a specified
environment for a specified time.

 Reliability is the probability of not failing in a
specified length of time.

Example:
Program X is executed to have reliability of 0.96 over eight

elapsed processing hours i.e.
if program x were to be executed 100 times & requires eight

hours of elapsed processing time, It is likely to operate
correctly 96 out of 100.

24



Software Reliability and Failure

Mathematical representation of Software failure:
F(n) = 1 - R(n) where,
F(n) =probability of failing in a specified length of

time.
R(n) = probability of reliability (i.e. not failing)
n = no. of time units,

Note: If time unit is assumed in days then probability of not
failing in 1 day is R(1)

25



Measure of  Reliability and Availability

Measure of Reliability
A simple measure of reliability for such a system is mean-
time-between-failure (MTBF)

MTBF = MTTF + MTTR
MTTF = Mean-time-to-failure
MTTR = Mean-time-to-repair

Measure of Availability:
It is the probability that a program is operating according to
the requirements at a given point in time & is defined as:

Availability = [MTTF / (MTTF + MTTR)] * 100%

26



Software Safety

Focuses on identification and assessment of potential
hazards to software operation.
Is different from software reliability
Software reliability uses statistical analysis to determine the
likelihood that a software failure will occur; however, the
failure may not necessarily result in a hazard or mishap.
Software safety examines the ways in which failures result
in conditions that can lead to a hazard or mishap; it identifies
faults that may lead to failures.
Software failures are evaluated in the context of an entire
computer-based system and its environment through the
process of fault tree analysis or hazard analysis.

27



Tribhuvan University
Institute of Engineering

Pulchowk Campus
Department of Electronics and Computer Engineering

by
Santosh Giri

Lecturer, IOE, Pulchowk Campus.

Software Engineering
Chapter 10

Configuration Management

28



Software Configuration Management

It is the task of tracking and controlling changes in the
software.
If something goes wrong, SCM can determine what was
changed and who changed it. If a configuration is working
well, SCM can determine how to replicate it across many
hosts.- Wikipedia
New versions of software systems are created as they
change, but why:
For different machines/OS.
Offering different functionality.
Tailored for particular user requirements.

29



Software Configuration Management Planning

All products of the software process may have to be
managed:
Specifications.
Designs.
Programs.
Test data.
User manuals.

Thousands of separate documents may be generated for a
large, complex software system.

30



Configuration Management Plan

Defines the types of documents to be managed and a
document naming scheme.
Defines who takes responsibility for the CM procedures and
creation of baselines.
Defines policies for change control and version
management.
Defines the CM records which must be maintained.
Describes the tools which should be used to assist the CM
process and any limitations on their use.
Defines the process of tool use.
Defines the CM database used to record configuration
information.

31



Change Management

Software systems are subject to continual change
requests:
From users
From developers
From market forces

Change management is concerned with keeping
track of these changes and ensuring that they are
implemented in the most cost-effective way.

32



Change Management Process

Request change by completing a change request form.
Analyze change request
if change is valid then

Assess how change might be implemented
Assess change cost
Submit request to change control board

if change is accepted then
repeat
make changes to software
submit changed software for quality approval
until software quality is adequate/acceptable
create new system version

else
reject change request

else
reject change request

33



Version and Release Management

Invent an identification scheme for system versions.
Plan when a new system version is to be produced.
Ensure that version management procedures and tools are
properly applied.
Plan and distribute new system releases.

Version vs Variant vs Release
Version: An instance of a system which is functionally
distinct in some way from other system instances.
Variant: An instance of a system which is functionally
identical but non-functionally distinct from other instances of
a system.
Release: An instance of a system which is distributed to
users outside of the development team. 34



Version Identification

Procedures for version identification should define an
unambiguous way of identifying component versions.
Some of basic techniques for component identification

1. Version numbering
2. Attribute-based identification etc.

1. Version Numbering
Simple naming scheme uses a linear derivation such as
→V1, V1.1, V1.2, V2.1, V2.2 etc.
The actual derivation structure is a tree or a network rather
than a sequence.

35



Version Numbering

36



Version Identification

2. Attribute-based identification
Attributes can be associated with a version with the
combination of attributes identifying that version

Examples of attributes are Date, Creator, Programming
Language, Customer, Status etc.

In practice, a version also needs an associated name for easy
reference.

37



Release Management

Releases must incorporate changes forced on the system by users due to
errors discovered, hardware changes etc.
They must also incorporate new system functionality.
Release planning is concerned with when to issue a system version as a
release.
System Release
Not just a set of executable programs. It may also include:

 Configuration files defining how the release is configured for a particular
installation.
Data files needed for system operation.
An installation program or shell script to install the system on target hardware.
Electronic and paper documentation,
Packaging etc.

Systems are now normally released on optical disks (CD or DVD) or as
downloadable installation files from the web.

38



Release Problem

Customer may not want a new release of the system
They may be happy with their current system as the new
version may provide unwanted functionality.

Release management should not assume that all
previous releases have been accepted. So, all files
required for a release should be re-created when a
new release is installed.

39



Case Tools for CM {see by yourself}

CM processes are standardized and involve applying pre-defined procedures.
 Large amounts of data must be managed.
CASE tool support for CM is therefore essential.
Mature CASE tools to support configuration

management are available ranging from stand-alone tools to integrated CM workbenches.
CM workbenches
Open workbenches
Tools for each stage in the CM process are integrated through organizational procedures and scripts.
Gives flexibility in tool selection.
Integrated workbenches
Provide whole-process, integrated support for configuration management. More tightly integrated tools so
easier to use. However, the cost is less flexibility in the tools used.
System Building
Building a large system is computationally expensive and may take several hours.
Hundreds of files may be involved.
System building tools may provide

A dependency specification language and interpreter
Tool selection and instantiation support
Distributed compilation
Derived object management.

40



Thank 
You!!!


	SE_lecturer1
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	2. Software doesn’t “wear out”�
	  . 
	  . 
	S/W Failure
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	Thank You!!!

	SE_lecturer2
	Slide Number 1
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	Thank You!!!

	SE_lecturer3
	Slide Number 1
	Slide Number 2
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	Thank You!!!

	SE_lecturer4
	Slide Number 1
	Slide Number 2
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	Slide Number 11
	  . 
	  . 
	  . 
	  . 
	Slide Number 20
	Slide Number 21
	  . 
	  . 
	  . 
	  . 
	Slide Number 26
	Slide Number 27
	Slide Number 28

	SE_lecturer5
	Slide Number 1
	Slide Number 2
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	Thank You!!!

	SE_lecturer6
	Slide Number 1
	Slide Number 2
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	Thank You!!!

	SE_lecturer7
	Slide Number 1
	Slide Number 2
	Objectives
	Topics covered
	Distributed systems
	System types
	Distributed system characteristics(Advantages)
	Distributed system disadvantages
	Distributed system disadvantages
	Distributed systems architectures
	Middleware
	3.6 Multiprocessor architectures
	Example - A multiprocessor traffic control system
	Example - A multiprocessor traffic control system
	3.7 Client-server architectures
	Example - A client-server system
	Example - Computers in a C/S network
	Example - Computers in a C/S network
	Thin and fat clients
	Thin and fat clients
	Thin client model
	Fat client model
	A client-server ATM system
	A client-server ATM system
	Disadvantages-Fat client model
	Disadvantages- Two-tier architecture
	Three-tier architectures
	A 3-tier C/S architecture
	Example- An internet banking system
	Example- An internet banking system
	Advantages-A 3-tier C/S architecture
	Multi-tier Architecture
	Use of C/S architectures
	3.8 Distributed object architectures
	Distributed object architecture
	Advantages of distributed object architecture
	Uses of distributed object architecture
	A data mining system
	Data mining system
	Data mining system
	CORBA
	CORBA application structure-�Object Management architecture(Siegal,1998)
	Application structure
	CORBA standards
	CORBA objects
	Object request broker (ORB)
	ORB-based object communications
	Inter-ORB communications
	CORBA services
	3.9 Inter-organizational computing
	Peer-to-peer architectures
	P2p architectural models
	Decentralized p2p architecture
	Decentralized p2p architecture
	Decentralized p2p architecture
	Semi-centralized p2p architecture
	Semi-centralized p2p architecture
	Service-oriented architectures
	Web service
	Web services
	Services and distributed objects
	Services standards
	Services scenario
	Automotive system
	Layered application architecture
	Application layers
	Thank You!!!

	Real Time system
	Slide Number 1
	Overview
	Real Time System
	Real Time System
	Stimulus/Response Systems
	Architectural Considerations
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	1.3. Monitoring and control systems
	 RTS design process
	Monitoring System  burglar alarm systems
	 Stimuli to be processed
	Slide Number 17
	Slide Number 18
	 Control systems
	Data acquisition system
	Slide Number 21
	Thank You!!!

	Software Reuse
	Slide Number 1
	Slide Number 2
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	Thank You!!!

	CBSE
	Verification and Validation
	Slide Number 1
	V vs V
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	Inspection checks 1
	Inspection checks 2
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	Thank You!!!

	1Software Testing
	Slide Number 1
	Types of Testing (Exam)
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Black box vs. white box testing (Exam)
	Integration testing
	Incremental integration testing
	Incremental integration testing
	Release testing
	Black-box testing
	Black-box testing
	Testing guidelines
	Case study for testingscenario1
	System tests for scenario1 
	8.2 Component testing
	Object class testing
	8.3 Test case design
	Slide Number 19

	2Cost Estimations
	Slide Number 1
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	  . 
	Slide Number 28

	Quality Management
	Slide Number 1
	Software Quality?
	McCall’s Quality Factors  already discussed
	Software Quality Assurance?
	SQA Activities & Tasks
	SQA Activities & Tasks
	SQA Activities & Tasks
	Formal Technical Reviews
	FTR Features continue…
	Reviews Guidelines
	Formal approach to SQA
	Statistical Quality Assurance
	Statistical Quality Assurance
	Statistical Quality Assurance
	Software Measurement and metrics
	Software product metrics
	Object oriented metrics
	Capability Maturity Model Integration (CMMI)
	Maturity level 1- Initial
	Maturity level 2- Managed
	Maturity level 3- Defined
	Maturity level 4- Quantitatively managed
	Maturity level 5 - Optimizing
	Software Reliability
	Software Reliability and Failure
	Measure of  Reliability and Availability
	Software Safety
	Slide Number 28
	Software Configuration Management
	Software Configuration Management Planning
	Configuration Management Plan
	Change Management
	Change Management Process
	Version and Release Management
	Version Identification
	Version Numbering
	Version Identification
	Release Management
	Release Problem
	Case Tools for CM {see by yourself}
	Slide Number 41


